TF-DAD:融合数字孪生数据时频特征的深度异常检测方法
DOI:
CSTR:
作者:
作者单位:

1.沈阳化工大学;2.沈阳工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省科技重大专项项目(辽科办发[2025]77号(3)-1) ;辽宁省应用基础研究计划项目(辽科办发[2025]64号(12)); 辽宁省科技重大专项项目(2024JH1/11700049);辽宁省自然科学基金项目(2023-MSLH-273)


TF-DAD: A Deep Anomaly Detection Method Fusing Time-Frequency Features of Digital Twin Data
Author:
Affiliation:

1.Shenyang University of Chemical Technology;2.Shenyang University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据作为数字孪生(Digital Twin,DT)系统的核心,结合异常检测方法对历史和实时的时序数据进行分析能更快、更准确地检测异常与预测工控系统未来的状态和行为。然而,现有的异常检测方法难以建模数据内在的复杂非线性特征、缺少对数据变量间关联的有效表达,且研究只局限在时域建模,忽略了对频域信息的提取与利用。为解决上述问题,本文提出一种融合数字孪生数据时频特征的深度异常检测方法TF-DAD。时域中时间卷积层与图卷积层共同构建时空卷积块,实现时间和空间依赖关系的同步捕获,将频域时序的频谱信息特征提取转化为幅度谱和相位谱图像特征提取任务,Vision Transformer层中的多分支注意力机制在多头注意力捕捉图像全局上下文信息的同时、并联轻量膨胀卷积以低计算复杂度提取局部信息从而实现图像全局信息特征的提取。将时频特征联合优化通过网格搜索最优阈值实现更精准的异常检测。在SWAT、WADI和SMD数据集上进行实验,实验结果表明F1指标比次优模型分别提升了6.14%、7.96%和9.02%,并在辽宁省石油化工行业信息安全重点实验室的数字孪生平台达到了91.75%的异常检测精度,验证了该方法面向数字孪生数据的有效性。

    Abstract:

    As the core of Digital Twin (DT) systems, the analysis of historical and real-time time-series data in combination with anomaly detection methods can detect anomalies and predict the future state and behavior of industrial control systems faster and more accurately. However, the existing anomaly detection methods are difficult to model the complex nonlinear features inherent in the data, lack an effective expression of the correlation between the data variables, and the research is only limited to the time-domain modeling, ignoring the extraction and utilization of the frequency-domain information. In order to solve the above problems, this paper proposes a deep anomaly detection method named TF-DAD, In the time domain, the time convolution layer and the graph convolution layer jointly construct the spatio-temporal convolution block to realize the synchronous capture of time and space dependencies, In the frequency domain, the spectral information feature extraction is transformed into the magnitude and phase spectral image feature extraction task, the multi-branch attention mechanism in the Vision Transformer layer captures global context information of the image through multi-head attention, while concurrently using parallel lightweight dilated convolutions to extract local information with low computational complexity so as to realize the extraction of global information features of the image. The time-frequency features are jointly optimized to achieve more accurate anomaly detection by searching the optimal threshold through the grid. Experiments are conducted on SWAT, WADI and SMD datasets, and the experimental results show that the F1 metrics are improved by 6.14%, 7.96% and 9.02% over the suboptimal model, and 91.75% of the anomaly detection accuracy is achieved in the digital twin platform of the Key Laboratory of Information Security of Liaoning Petrochemical Industry, which verifies the effectiveness of the method for digital twin data.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-17
  • 最后修改日期:2025-10-28
  • 录用日期:2025-12-11
  • 在线发布日期:
  • 出版日期:
文章二维码