网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

中国垃圾渗滤液产生现状及处理展望  PDF

  • 张燕燕
  • 郑志宏
  • 刘红亮
  • 付曼琴
  • 李蕾
  • 彭绪亚
重庆大学 环境与生态学院,重庆 400045

中图分类号: X705

最近更新:2023-06-27

DOI:10.11835/j.issn.1000-582X.2022.255

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

垃圾渗滤液污染物浓度高且生态风险大,其处理处置受到国家高度重视。基于大量文献分析,综述了中转站、焚烧厂、填埋场等各类垃圾渗滤液的产量及污染特性;结合当前固废处理政策展望了垃圾渗滤液处理技术及管理方面的发展。研究表明,随着“无废城市”建设,垃圾分类以及原生垃圾零填埋等政策的实施可从“量与质”双方面缓解渗滤液处理难题,未来中国垃圾渗滤液的主要处理对象是中老龄垃圾渗滤液。“预处理+生物处理+深度处理”的技术模式是处理渗滤液的有效手段。垃圾分类背景下,未来前处理阶段主要关注各工艺的局部优化;生物处理阶段,开发低碳源和无碳源脱氮工艺对增效降耗具有积极意义;深度处理阶段,关注非膜法全量化处理工艺可解决浓缩液问题并去除痕量有机物,有助于更全面地管控渗滤液污染风险。

随着中国经济的快速发展及居民生活质量的提升,城市生活垃圾产生、清运及处理量逐年递增。据报道,每吨城市生活垃圾在其转运及处理(如填埋、焚烧等)等生命周期过程中会产生0.05~0.2 t垃圾渗滤[

1⁃2]。垃圾渗滤液具有污染物浓度高且生态风险大的特征。其生化需氧量(BOD)、化学需氧量(COD)等常规污染物的含量可达城市生活污水的100倍之多,且还蕴含重金属、环境激素、杀虫剂、增塑剂、氯化和卤代有机物等各种微量污染[3]。这些微量污染物具有致癌、致畸、致突变等生物效应,会对微生物、野生动物和人类产生严重危害。

因此,国家高度重视渗滤液处理工作,在《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》、《水污染防治行动计划》等政策中均要求做好垃圾渗滤液处理处置工作。科技部各大专项中,也高度重视渗滤液处理的技术攻关。在此背景下,掌握垃圾渗滤液特性以及分析未来渗滤液处理技术的发展显得尤为重要。鉴于此,本研究拟基于大样本统计,综述中国垃圾渗滤液的产量、污染特性及处理处置现状,并结合中国固废政策的发展,分析、评述及展望垃圾渗滤液处理领域的发展方向。

1 垃圾渗滤液产量及污染特性

1.1 垃圾渗滤液的产生现状及趋势

垃圾渗滤液主要源于城市生活垃圾转运及处理处置单元。其中,转运站渗滤液主要来自垃圾压缩、暂存降解等过程中产生的液体、车间地面冲洗水等,其产量约为转运垃圾量的10%~15%[

4]

处理处置方面,目前焚烧是国内主导的垃圾处理方式,因生活垃圾中有高含量的湿垃圾(约60%[

5],导致其有效热值低,焚烧厂为提高垃圾能源化价值,往往将其在入炉焚烧前储存3~7 d,以降低含水量,在此期间会产生大量渗滤液,产量约为垃圾量的10%~20%[6]

中转站和焚烧储坑中渗滤液是短期压缩或发酵产生的,而垃圾填埋过程产生的渗滤液,是垃圾压实后堆积在一起,并在漫长的厌氧降解中,逐步释放产生的。且除垃圾本身降解产生的液体外,填埋渗滤液中还包括从垃圾表面渗入的雨水以及场底渗入的地下水,在建设良好的卫生填埋场内,尤以前者为最。因此,垃圾含水率和降雨量都是影响填埋场渗滤液产量的重要因[

7]。鉴于中国的降雨量呈现东南高西北低、且主要集中在夏季的特[8],东南地区填埋场的渗滤液产量往往大于西北地区,而一年之中,又以夏季渗滤液产量最高。地域性和季节性的巨大差异,使填埋场渗滤液产量难以定量在一个较准确的范围,目前尚未有垃圾渗滤液产量的官方统计数据,但根据环保公司的数据和渗滤液产量计算公式得出国内垃圾填埋场渗滤液产量为填埋垃圾量的15.27%~30.00%[9]

总体而言,中国垃圾渗滤液产量远高于发达国家。根据《2019—2025年中国垃圾渗滤液处理行业运行态势与投资前景评估报告》的数据,2017年全国产量达7.68×107 t/a,而西班牙垃圾渗滤液产生量约为7×105 m3/a,2013年爱尔兰从垃圾填埋场收集到的渗滤液总量约为1.1×105 m3[

10]。造成这种现象的主要原因在于,与西方人相比,中国民众更喜食新鲜蔬菜和水果,由此残余的有机垃圾含水率高;而垃圾分类不够彻底,又使得生活垃圾中有机垃圾比重[9]。2019年世界银行统计了各国有机垃圾在生活垃圾中的占比,数据显示,中国垃圾中有机垃圾占61.2%,高于美国(14.9%)、欧洲(38.8%)、日本(36.0%)、韩国(30.0%)、西班牙(49.0%)、爱尔兰(16.6%)。同时中国生活垃圾含水率为52.2%,高于美国(19.0%)、欧洲(34.0%)、日本(47.5%)、韩国(30.3%[11]

值得注意的是,中国已自2018年起开始推行“无废城市”建设,其核心包括固体废物的源头减量、资源化利用以及优化末端处置,其中垃圾分类是源头减量的主要举措。上海实施垃圾分类后,84%的湿垃圾被有效从生活垃圾中分离出来,使得干垃圾含水率下降48.22%,热值达到8 190 kJ/kg,较分类前增长94.40%[

12],焚烧厂渗滤液由此明显减量。固体废物的资源化利用,特别是湿垃圾资源化利用,也是实现无废城市的重要环节。苏州市吴中区餐厨垃圾项目采用“湿热水解+厌氧产沼”工艺,截至2018年已累计处理餐厨垃圾98.35万t,生产生物柴油3.1万t、沼气3 391万m3[13]。此举不仅实现了变废为宝,也将湿垃圾与其他干的生活垃圾分离开来,显著降低了生活垃圾在转运、焚烧及填埋等单元的渗滤液产量。末端治理方面,提倡根据各类垃圾性质的不同,分类采用最适宜的技术处理,处理后的固态残渣再进行最终处置,稳步实现原生垃圾“零填埋”。如北京垃圾处理模式由2005年卫生填埋:焚烧:堆肥=72:13:14,演化为2020年卫生填埋:焚烧:堆肥=24:51:25,逐步形成“焚烧为主,堆肥为辅”的处理模[14]。在此模式中,含水率高的生物质垃圾堆肥处理,干垃圾焚烧回收热能,不可资源化利用的固态残渣再填埋处置,各环节共同实现渗滤液减量。由此可见,随着中国“无废城市”建设的推进,渗滤液产量有望逐步削减。

1.2 垃圾渗滤液的污染特性

垃圾渗滤液有成分复杂、有机物含量高、营养元素失衡、水质变化范围大等特点。表1汇总了中国各类垃圾渗滤液的水质状况。

表 1  中国各类渗滤液的水质状况
Table 1  Water quality of various leachate in China
类别参数

COD/

(mg∙L-1)

BOD/

(mg∙L-1)

悬浮物(SS)/

(mg∙L-1)

B/C

氨氮(NH3—N)/

(mg∙L-1)

总氮(TN)/

(mg∙L-1)

碳氮比(C/N)pH色度/倍

参考

文献

中转站渗滤液 均值 32 426.21 19 750.04 5 823.43 0.48 399.78 1 020.88 63.78 4.99 498.08 [15]
中位数 29 544.06 12 293.06 2 165.50 0.48 337.60 1 184.50 30.74 4.55 561.00
标准差 21 682.11 17 014.57 6 620.93 0.21 357.99 502.30 59.92 1.11 333.78
焚烧厂渗滤液 均值 49 048.37 27 831.23 7 701.48 0.54 1 477.95 2 475.63 23.85 6.05 1 655.29 [16⁃25]
中位数 52 300.00 29 516.00 6 000.00 0.53 1 505.98 1 928.50 19.93 6.00 752.50
标准差 16 939.23 8 865.30 6 870.23 0.18 592.65 2 050.78 19.61 0.88 2 456.61
低龄渗滤液 均值 11 556.20 5 947.15 742.70 0.48 1 305.64 1 792.59 7.40 7.28 [17⁃22,26⁃27]
中位数 10 929.00 5 365.00 669.38 0.47 1 341.00 1 709.00 5.37 7.18
标准差 7 653.98 4 516.37 437.76 0.08 722.47 712.87 4.32 0.72
中龄渗滤液 均值 5 345.43 2 717.50 535.00 0.41 1 484.86 1 600.00 1.75 8.07 429.33 [18⁃20,22,26, 28⁃29]
中位数 3 750.00 3 215.00 275.00 0.39 1 337.00 1 600.00 1.93 8.15 568.00
标准差 3 736.30 1 444.76 385.51 0.17 655.31 408.25 0.92 0.37 219.12
老龄渗滤液 均值 3 756.84 394.19 219.25 0.14 1 520.24 1 525.98 0.23 8.17 1 598.87 [17⁃23,26]
中位数 3 250.00 375.00 168.50 0.14 1 400.00 1 255.45 0.16 8.15 1 399.25
标准差 2 075.09 251.35 173.12 0.08 627.80 422.41 0.17 0.39 1 192.94

注:  低、中、老龄渗滤液分别指填埋龄在0~5,5~10,10a以上的渗滤液,C/N为BOD/TN。

表1可知,渗滤液的污染物质量浓度是生活污水(COD 200~400 mg/L、NH4+N 35~60 mg/L、TN 40~70 mg/L[

30]的几十甚至几百倍,质量浓度最低的填埋场老龄渗滤液的COD中位数都高达3 250 mg/L。相较之下发达国家渗滤液COD含量低得多,爱尔兰垃圾填埋场低、中、老龄渗滤液COD含量分别为1 100,693,221 mg/L[10]。这可能是由于现阶段中国垃圾分类不完全造成的,因为易降解的有机垃圾往往被认为是渗滤液COD的主要来源。与COD类似,BOD也呈现焚烧厂渗滤液最高、中转站渗滤液次之,填埋场渗滤液随填埋龄延长而BOD含量下降的特性。这主要是因为新鲜垃圾中可生化降解的有机质含量高,随后在填埋过程中易降解有机质被逐步降解,则填埋龄越长剩余的易降解有机质越少。可生化性指标BOD/COD(B/C)的规律也是类似的,焚烧厂、中转站和低龄渗滤液的B/C大于0.45,指示可生化性良好,但中老龄渗滤液,尤其是老龄渗滤液B/C降至0.25以下,表明其可生化性极差。

含氮量高且C/N低是渗滤液的另一大特性。各类渗滤液的氨氮、总氮含量都远高于生活污水,尤其是填埋场老龄渗滤液,氨氮和总氮含量达到1 500 mg/L以上(表1)。这主要是因为填埋场内垃圾是厌氧降解的,而厌氧条件下氨氮无法发生硝化、反硝化作用被返回大[

31],于是不断在渗滤液中积聚。氮浓度的增加和有机质的下降造成了C/N随垃圾降解程度的增加而下降。由表1可知中转站、焚烧厂以及年轻填埋场渗滤液C/N都在适合微生物生长的范围内(>3),然而中老龄垃圾渗滤液C/N低至2以下,指示碳源极度缺乏。

除了最主要的这2类污染物外,表1还展示了不同渗滤液的SS、pH和色度差异。其中,pH主要与渗滤液中的有机酸含量相关,从中转站到焚烧厂到填埋场,随着降解时间延长,有机酸被消耗,pH逐渐增加。SS和色度都与渗滤液中有机物质有关,但前者和COD质量浓度呈正比,因此在中转站、焚烧厂渗滤液中呈现高质量浓度;后者却主要受难降解有机物影响,因此在老龄渗滤液中呈现最高质量浓度。

除上述常规污染物外,渗滤液中还含有重金属及痕量有机物。重金属方面,常见类别有Hg(0.002 5~0.03 mg/L)、Pb(0.03~8.54 mg/L)、Cr(0.004~2.37 mg/L)、Cd(0.008 2~0.56 mg/L)、Cu、Zn、As(0.007~0.176 8 mg/L)和Ni[

20,32⁃41],其含量差别较大。重金属主要源自填埋场混入的工业废物、污泥及生活垃圾中混入的电池、温度计等含重金属的废物,尤以前两者为主要来源。因转运站以转运居民生活垃圾为主要任务,其重金属含量在3种渗滤液中最[42]。而焚烧厂渗滤液因pH值较低,重金属溶出量大,含量是三者中最高[43]。填埋场随着填埋年龄的增长,渗滤液中重金属含量逐渐降低,这主要是因为填埋后期pH逐渐呈碱性,导致重金属离子络合。垃圾渗滤液中痕量有机物主要包括药物和个人护理品(PPCPs)(0.05~642.60 μg/L,中位数7.72 μg/L)、全氟化物(PFCs)(0.34~282.15 μg/L,中位数8.59 μg/L)、邻苯二甲酸酯(PAEs)(5.81~1 263 μg/L,中位数207.51 μg/L)[44]。Wu[45]在长三角地区垃圾渗滤液1个样本中至少检出了45种PPCPs,包括29种抗生素、3种非甾体抗炎药、2种驱虫剂和11种其他PPCPs。在过去20年里,全球垃圾填埋场渗滤液中共报告了172种PPCPs,包括抗生素、抗炎药、兴奋剂和受体阻滞[46]。但是现阶段中国关于痕量有机物污染的数据仍然很少,在某些污染物种类(如微塑料、新型溴化阻燃剂等)和一些地区(西北、东北地区)仍存在数据空[44]。重金属和痕量有机物对生态系统和食物链造成有害影响,导致人类的致癌效应、急性毒性和遗传毒[47]。鉴于它们主要是工业或有害垃圾混入生活垃圾造成的,若能贯彻分类收集和处理制度,有望从根本上减少渗滤液中有毒有害物质的种类及浓度。

2 垃圾渗滤液处理技术及展望

鉴于垃圾渗滤液是一种高浓度的有机废水,且含有有毒重金属和各种高危痕量有机物,其处理处置受到国家广泛关注。目前工程中往往采用“前处理+生物处理+深度处理”的组合工艺来处理垃圾渗滤液。其中,前处理一般采用物化处理,包括混凝法、吹脱法、沉淀法、吸附法等,其主要目的在于降低SS浓度,去除部分重金属离子;生物处理有好氧及厌氧、好氧组合等多种形式,常规工艺包括上流式厌氧污泥床(UASB)、上流式污泥床过滤器(UBF)、膜生物反应器(MBR)、A2/O、A/O等,生物处理的主要任务是脱氮除碳;深度处理技术包括膜技术、高级氧化技术等,主要任务是作为生物处理出水的保障,进一步降低出水中COD、NH3-N及金属离子的浓度和色度。考虑到目前中国垃圾分类正如火如荼的开展且已初见成效,采用焚烧处理的干垃圾含水率无疑会逐渐降低,而当含水率低于40%时,垃圾中转站的压滤液和焚烧厂的渗滤液产量均可以忽略不[

5]。而随着“原生垃圾零填埋”政策的推进,新鲜垃圾渗滤液也会逐步减量。因此,未来垃圾渗滤液处理的重心将会集中在现有垃圾填埋场产生的渗滤液上,即中老龄垃圾渗滤液将成为未来主要的处理对象。鉴于此,本部分集中讨论中老龄垃圾渗滤液的处理工艺,表2列出了中国中老龄垃圾渗滤液处理典型工艺类型、规模及成本。

表 2  中国中老龄垃圾渗滤液处理典型工艺类型、规模及成本
Table 2  Typical process types, scale and cost of leachate treatment of middle and aged landfill in China
处理对象厂名处理工艺

运行规模/

(m3d-1)

成本/

(元∙m-3)

参考文献
中龄填埋场渗滤液 溧阳填埋场 调节池+均质池+MBR(两级A/O)+纳滤(NF)+反渗透(RO) 200 27.69 [48]
山东省某县城生活垃圾填埋场 调节池+活性砂预处理+机械压缩蒸发(MVC)+NF 80 [49]
某生活垃圾填埋场(中后期) 调节池+混凝沉淀+氨氮吹脱+两级A/O-MBR+NF+RO 350 52.74 [50]
老龄填埋场渗滤液 沈阳市老虎冲生活垃圾卫生填埋场 调节池+均质池+MBR(两级A/O+超滤)+NF+RO 1 100 75.00 [51]
安岳县垃圾填埋场(应急工程) 调节池+篮式过滤器+砂滤器+芯式过滤器+两级碟管式反渗透(DTRO)+脱气塔 200 41.82 [52]
广东省某垃圾填埋场 调节池+反应沉淀池+高效厌氧反应罐+两级A/O+Fenton+曝气生物滤池(BAF) 100 23.20 [53]
揭阳市东径外草地生活垃圾填埋场 集水调节池+UASB+MBR+RO+机械压缩洁净蒸发(MVPC) 190 42.64 [54]
东兴市卫生填埋场 调节池+中温厌氧反应器+MBR(一级A/O+微滤)+NF/RO+活性炭过滤器 200 [55]
重庆某垃圾填埋场 均衡罐+内置式MBR+Fenton+BAF 180 [56]

2.1 前处理

中老龄垃圾渗滤液SS浓度不高,所以表2列出的工程中,渗滤液一般直接进入调节池均衡水质水量,保证生化段进水稳定,避免负荷冲击即可。对于碳氮比失调、可生化性极差的老龄渗滤液,调节C/N往往是前处理过程中的重要环节,因为低C/N会抑制后续生物处理过程中微生物体内脱氢酶的活[

5],且碳源缺乏不利于反硝化脱氮。氨吹脱是提高C/N的有效措施。氨吹脱是在碱性条件下,将氨氮转化为氨气,再通入空气吹出氨气,使氨氮降低的方法。氨吹脱有较强的普适性,可以根据实际氨氮浓度不断调整加碱量。但由于该技术需要调节pH并保持较高温度,而调节pH时投加大量Ca(OH)2不仅增加成本还可能导致吹脱塔结垢等问[57],一些能够降低成本并保证较高的氨氮去除率的新兴技术,如支撑气膜[58],将是未来发展的方向。部分填埋场也会选择加入COD含量高的废水,如周边填埋场年轻垃圾渗滤液、垃圾焚烧渗滤[59]、堆肥污水、粪便污水、场区生活污水、餐厨垃圾处理废[60]、污泥处理系统上清[51]等与中老龄渗滤液合并处理以提高C/N。在某些C/N失衡不特别严重的项目中,也有向前处理出水中加入原水,补充一部分前处理过程中的损失碳量,以提高后续生物处理的C/N[61]的先例。但若新鲜渗滤液或者渗滤液原水中氨氮含量较多,或添加量较大,此举会对氨氮处理带来负面影响。投加甲醇、葡萄糖、乙酸、乙酸钠等碳[59]来调节碳氮比也是常见做法,但这会增加处理成本,以重庆某填埋场渗滤液处理站为例,如以NH3—N 700 mg/L计,葡萄糖为外加碳源,提高CODCr 5 300 mg/L,吨水成本增加约17.5元。

鉴于中老龄尤其是老龄渗滤液可生化性极差,有些项目还会舍弃生物处理,预处理后直接接入膜处理、MVC蒸发等处理系统,此时就需要加入较为复杂的前处理流程,如过滤器、砂滤器等,以减少膜清洗频率、延长寿[

17]。对于含盐量高、管道结垢严重的情况,可能还会增设混凝沉淀。曹羡[62]在传统混凝剂PAC和助凝剂PAM的基础上,添加磁性Fe3O4形成高密度复合磁性絮凝体,最终COD、氨氮、浊度的处理效率分别为55.86%、36.13%和88.91%,优于常规絮凝处理技术。可见,开发新型絮凝体对优化前处理效果也具有重要意义。

2.2 生物处理

生物处理阶段,考虑到老龄渗滤液的有机物中难降解有机物较多,而厌氧处理对难降解有机物的去除效果较好,部分工程会选择将老龄渗滤液先经过厌氧处理,提高部分可生化性后再进行好氧处理。最常用的厌氧处理工艺为UASB和UBF,其中UASB污泥浓度高,容积负荷率高,结构简单、运行方便、无需设污泥回流装置,容积负荷可达到10 kg COD/(m3·d)以上。UBF在UASB的基础上结合了滤床,延长了污泥停留时间以维持高污泥浓度,能更好地抗冲击负荷。好氧处理多采用A/O工艺,与厌氧工艺串联或单独使用。其中A和O分别指缺氧和好氧段,前者可发生反硝化作用实现脱氮,后者发生硝化作用,将氨氮转化为硝态氮,两段之间通过内循环,实现有序的脱氮。生化处理的最后工序为MBR,该段有内置或外置两种形式,可取代传统二沉池实现泥水分[

63]。鉴于A/O工艺是最成熟、稳定、可靠的脱氮工艺,此类渗滤液的好氧单元以此工艺为主,而根据水质不同,选用单级、两级甚至三级A/O-MBR的都存在。

值得注意的是,现有老龄垃圾渗滤液处理工程中常用年轻垃圾渗滤液和焚烧厂渗滤液调节C/N以便进行生物处理,然而垃圾分类制度的逐步推广将导致这两类渗滤液产量下降,为规避外加碳源引起的高成本,一方面可寻找新的高碳废水来联合处理,如餐厨垃圾厌氧消化场沼液可能将是一个合适的选择。另一方面,也应更多的关注厌氧氨氧化、短程硝化反硝化等低碳源甚至无碳源处理工[

64]。短程硝化反硝化指将硝化过程控制在亚硝酸盐阶段,再利用亚硝酸盐进行反硝化。相比于传统硝化反硝化脱氮工艺,理论上可以节省25%的氧和40%的[65]。厌氧氨氧化技术中,氨氮直接与亚硝态氮在厌氧氨氧化菌的作用下生成氮气,减少了25%的需氧量、100%的外加碳[66]、63%的曝气量和90%的污泥产[67]。由此可见,这些技术都适合老龄垃圾渗滤液低碳氮比的水质特点,可减少成本,应是未来研究和发展的重点。现今国内外已有3处运用厌氧氨氧化工艺的渗滤液处理[68],在攻克其快速启动瓶颈后,未来有望涌现出更多工程案例。

2.3 深度处理

2.3.1 膜处理

现有处理工艺大部分以好氧生物处理为主体,尽管该类技术对COD、氨氮分别有近80%和90%的去除[

69],但出水依然难以达标,难降解有机物和色度仍需进一步处[44]。膜处理是中国目前使用最广泛的深度处理技术,占渗滤液处理总量的65.7%[70]。生化和膜工艺互补结合对氨氮、痕量有机物和重金属离子的去除具有显著效[63]

具体而言,膜工艺主要包括NF、RO等,由于追求浓缩液的减量化,近年来DTRO也有较广泛的应用。与DTRO相比,NF和RO成本低,在焚烧厂广为采用,中国已建成的300多座渗滤液处理厂中,结合MBR和NF进行处理的工艺约占90%[

71]。其中RO能够去除渗滤液中98%以上的COD和99.6%的氨[72],而且它截留分子量更小,常作为保障工艺,放置在NF之后,用于防止膜污染、保持膜寿[63];而当NF出水可达标时则越过RO。这样既保证了出水水质的稳定性,也节约了成本。DTRO相比卷式RO系统,具有较高的操作压力和较高的抗污堵能[73]。膜工艺作为现阶段的成熟工艺,最大的优点就是保证了出水稳[69],但也存在难以避免的缺点:膜污堵问题严重。膜系统运行一段时间就会出现低脱盐率、低产水率、膜管连接件漏水、膜管压力超高等现[61],为保证系统顺利进行,要定期对膜进行清水反洗、酸洗和碱[72],造成成本增加、管理难度大。采用膜系统还会产生浓缩液,浓缩液成分较渗滤液更为复杂,存在大量腐殖质等难降解有机物,且无机盐离子、钙镁离子及重金属离子等含量高、硬度及电导率高(可分别高达1 000~2 500 mg/L和20 000~50 000 μS/cm[70]),处理更为复杂。因此,尽管膜技术发展越发成熟,膜系统产水率和浓缩倍数提高,但浓缩液问题却成为膜技术应用的瓶颈。

过去填埋场浓缩液往往采用回灌处理,管理者期望通过浓缩液回灌调整堆体含水率,并充分利用堆体中微生物的降解及垃圾的截留作用实现污染物减量。然而,实践表明垃圾大孔隙流的特性使得灌入堆体的水很快会再次释放出来,无法起到污染减量的目的,且回灌会使渗滤液含盐量、电导率、难降解有机物等累积,不仅影响其生化处理系统活性污泥的增长,还会影响后续深度处理的膜通量和运行压力,降低处理效[

74]。甚至大量回灌还可能提高垃圾堆体水位,影响堆体的稳定性。随着环保意识的增强,回灌处理已越来越不被认可,GB16889—2020中甚至明确指出,生活垃圾填埋场单独处理渗滤液产生的浓缩液应单独处置,不得回灌生活垃圾填埋场和进入城市污水处理厂处置,可见浓缩液的就地处理已成为必然趋势。

表3总结了目前主要的浓缩液处理技术,并列出了其原理、成本及优缺点。总体来看,浓缩液处理方法主要是蒸发、回喷燃烧和高级氧化3大类。蒸发是采用各种手段将渗滤液中的水转化为气相挥发,而残留的固体物质进行后处理的技术。尽管不同的蒸发工艺采用的蒸发方式稍有区别,但最终都会残留污泥需进一步处理,且存在一定的设备结垢和腐蚀问题。回喷技术仅适用于距离焚烧厂较近区域的浓缩液处理,且对焚烧炉膛的腐蚀也不可小觑,此举还会降低热能回收效率,和焚烧贮坑脱水提高垃圾热值的初衷是违背的。高级氧化是处理难降解有机物的主流工艺之一,因此可用于处理浓缩液,但如表3所述,该技术处理条件苛刻,能耗及成本高,且处理对象局限于有机物,要对渗滤液中的高盐浓度进行处理往往还需耦合其他工艺。可见,目前还没有具有绝对优势的浓缩液处理工艺出现,进一步研究新的浓缩液处理工艺,或者采用渗滤液全量化处理工艺从源头减少浓缩液产生是必要的。

表3  浓缩液处理工程技术
Table 3  Engineering technology of concentrated leachate treatment
浓缩液处理处置方法原理成本优点缺点参考文献
浸没式燃烧蒸发(SCE)工艺 将沼气燃烧后产生的高温烟气通入浓缩液中,气液传质将烟气中的热量传递给液体,使其受热蒸发

3.21~

10 元/t

避免结垢结晶、设备腐蚀等问题;效率高;浓缩倍数高,产水率高达98% 蒸发过后的残留污泥问题;氨氮去除率较差 [75⁃76]
MVC 通过机器压缩蒸汽提供热能,使水沸腾汽化,并不断除去汽化的水蒸气,水从渗滤液中蒸出,污染物保留在浓缩液中

128.6~

141.17 元/t

流程简单、系统稳定 设备腐蚀严重、主材需要耐腐蚀,所以价格昂贵;蒸发过后的残留污泥问题 [77⁃78]
MVC+离子交换(DI) 在MVC蒸发的基础上加入离子交换装置,去除浓缩液中的盐离子

27~

35 元/t

适合高盐环境;产水率90~98%;工艺简单、可移动;离子交换对氨氮也有很好的去除效果,且回收了铵盐 存在结垢问题降低传热效率;蒸发过后的残留污泥问题 [70,79]
负压蒸发法 利用了水在负压条件下沸点降低的特性进行蒸发 有效避免氯离子对金属设备的腐蚀 蒸发过后的残留污泥问题 [77]
碟管式纳滤(DTNF)+高压级碟管式反渗透(HPRO)+机械式蒸汽再压缩(MVR) 通过DTNF将低价与高价盐离子分离;在通过HPRO进一步减量并提高物料浓度,最后进入MVR蒸发结晶 88 元/t 可有效缓冲进水负荷冲击;避免蒸发设备结垢;利用HPRO减量,节省蒸发成本 有污泥产生 [80]
回喷焚烧 直接喷入焚烧炉进行高温氧化处理 污染物去除彻底;减量效果好;处理速度快 炉膛温度低于850 ℃时,存在环保不达标的风险;导致二噁英产生;存在设备腐蚀问题;影响垃圾热值 [6,81]
高级氧化 芬顿 Fe2+和H2O2反应产生·OH,无选择性地降解有机物 适用范围广;可以显著提高污染物的可生化性;能将污染物彻底矿化,降解效率高; 使用试剂量大,成本高;Fe2+造成二次污染;需要控制高酸性条件 [70]
臭氧氧化 特定条件下,激发O3产生的·OH,以及O3本身具有强氧化性降解有机物 能将难降解有机物转化为易降解有机物,效果好、操作简便 臭氧利用效率低;工艺持续时间长;能耗较高,处理成本过高,不易实现大规模处理 [82]
絮凝+臭氧氧化 通过加入絮凝剂去除部分有机物;再通过臭氧氧化彻底降解有机物 可有效去除大分子量有机物和低分子量耐混凝物质;提高可生化性,方便后续生物处理 能耗较大 [83]

2.3.2 高级氧化

高级氧化技术是渗滤液全量化处理技术的典型代表。高级氧化技术是利用反应产生的强氧化自由基无选择性地氧化难降解有机物为小分子有机物甚至CO2的技术,有臭氧氧化法、芬顿氧化法、过硫酸盐氧化法、光催化氧化法、湿式氧化法和超声波氧化法等类别。该技术不仅对常规的难降解有机物有去除效果,可以实现85%以上的COD去除率,提高可生化[

84],还可去除1.2节中提到的痕量有机物,而这是目前其他各类技术甚至标准中都未关注的。渗滤液处理领域应用最广泛的高级氧化技术是Fenton技[53,56]。如表2中展示的广东省某垃圾填埋场在处理老龄渗滤液时,生化段后接Fenton处理单元,该单元主要利用Fe2+催化H2O2生成具有强氧化性的·OH,使·OH降解渗滤液中剩余的难降解有机物。考虑到将难降解有机物完全矿化需要大量的化学药剂及较长停留时[85],该填埋场出于成本及占地等考虑,在将有机物部分氧化提高了渗滤液的可生化性后,又增设了一个生化处理段(BAF工艺段),实现了全量处理及达标排[53]。重庆市某垃圾填埋场也采用了该全量处理工艺,实现了出水稳定达标,且产水率达97%以[56]。和膜处理工艺相比,Fenton技术反应迅速、降解彻底、不会产生二次污染,对COD、色度等有着较好的去除效果,尽管尚无市场占有率统计数据,但不可否认在渗滤液处理领域已经有了越来越广泛的应用。值得注意的是,该工艺也存在一些瓶颈,化学药剂消耗大引起成本高是一方面;另一方面,为保证反应顺利进行,需要调节反应pH到4左右,而且在反应过程中会产生大量铁泥,出水色度高,需进一步处理。避免催化剂流失及拓宽反应所需pH范围等都是芬顿高级氧化发展的方向。绿色芬顿是以原子氢为媒介的H2O2电还原活化过程,不加入过渡金属,源头上消除了二次污染问[86]。而天然及人工合成的铁矿物构建的非均相芬顿催化体系具有pH适应范围广、催化剂回收利用方便、色度及铁泥产生少等优越[87]。此外,使用络合剂拓宽pH范[88],在Fenton/类Fenton基础上开发耦合技[89]等都是未来Fenton技术的发展方向。

3 结 论

1) 垃圾渗滤液产量大、成分复杂且污染物浓度极高。随着“无废城市”建设的推广普及,可逐步降低渗滤液产量及其中各类污染物的浓度,突破渗滤液处理“量与质”上的困境。

2) “无废城市”建设,以及该框架下垃圾分类政策的实施,将会使中国干垃圾含水率逐渐下降,当垃圾含水率低于40%,中转站及焚烧厂垃圾渗滤液的产生量可以忽略;“原生垃圾零填埋”等政策又将杜绝填埋场低龄渗滤液的产生,因此填埋场中老龄垃圾渗滤液将是未来渗滤液处理领域的主要处理对象。

3) “前处理+生物处理+深度处理”是现阶段渗滤液处理的主要工艺,前处理用于去除SS及部分重金属离子;生物处理用于去除有机物和NH3-N;深度处理技术作为生物处理出水的保障,进一步降低出水中COD、NH3—N、金属离子的浓度和色度。

4) 未来处理工艺的发展方面,针对各类技术进行提质增效是必要的。其中,生物处理应重点关注短程硝化反硝化、厌氧氨氧化等低碳节能技术的发展;深度处理应将重心放在以高级氧化为代表的非膜法全量化处理工艺上,这不仅可解决浓缩液问题,还能彻底去除痕量有机物,降低其中痕量高危及尚未知风险物带来的环境及健康风险。

参考文献

1

Jagaba A H, Kutty S R M, Lawal I M, et al. Sequencing batch reactor technology for landfill leachate treatment: a state-of-the-art review[J]. Journal of Environmental Management, 2021, 282: 111946. [百度学术] 

2

Iskander S M, Zhao R Z, Pathak A, et al. A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment[J]. Water Research, 2018, 145: 297-311. [百度学术] 

3

Lin H, Peng H J, Feng X W, et al. Energy-efficient for advanced oxidation of bio-treated landfill leachate effluent by reactive electrochemical membranes (REMs): laboratory and pilot scale studies[J]. Water Research, 2021, 190: 116790. [百度学术] 

4

王罕, 靖丹枫. 某垃圾转运站渗滤液处理设计及运行[J]. 污染防治技术, 2020, 33(4): 24-27. [百度学术] 

Wang H, Jing D F. Design and operation of leachate treatment of the waste transfer station[J]. Pollution Control Technology, 2020, 33(4): 24-27. (in Chinese) [百度学术] 

5

Chen S S, Huang J L, Xiao T T, et al. Carbon emissions under different domestic waste treatment modes induced by garbage classification: case study in pilot communities in Shanghai, China[J]. Science of the Total Environment, 2020, 717: 137193. [百度学术] 

6

Shi J Y, Dang Y, Qu D, et al. Effective treatment of reverse osmosis concentrate from incineration leachate using direct contact membrane distillation coupled with a NaOH/PAM pre-treatment process[J]. Chemosphere, 2019, 220: 195-203. [百度学术] 

7

Ma S J, Zhou C B, Pan J J, et al. Leachate from municipal solid waste landfills in a global perspective: Characteristics, influential factors and environmental risks[J]. Journal of Cleaner Production, 2022, 333: 130234. [百度学术] 

8

殷浩, 吴志勇, 何海. 基于机器学习的季尺度干旱预测研究[J]. 人民长江, 2021, 52(S2): 60-63, 78. [百度学术] 

Yin H, Wu Z Y, He H. Study on seasonal scale drought prediction based on machine learning[J]. Yangtze River, 2021, 52(S2): 60-63, 78.(in Chinese) [百度学术] 

9

Shi L, Chen H X, Meng H L, et al. How environmental policy impacts technology adoption: a case of landfill leachate[J]. Journal of Cleaner Production, 2021, 310: 127484. [百度学术] 

10

Brennan R B, Healy M G, Morrison L, et al. Management of landfill leachate: the legacy of European union directives[J]. Waste Management, 2016, 55: 355-363. [百度学术] 

11

房德职, 李克勋. 国内外生活垃圾焚烧发电技术进展[J]. 发电技术, 2019, 40(4): 367-376. [百度学术] 

Fang D Z, Li K X. An overview of power generation from municipal solid waste incineration plants at home and abroad[J]. Power Generation Technology, 2019, 40(4): 367-376.(in Chinese) [百度学术] 

12

Wang Y, Shi Y, Zhou J Z, et al. Implementation effect of municipal solid waste mandatory sorting policy in Shanghai[J]. Journal of Environmental Management, 2021, 298: 113512. [百度学术] 

13

何晟, 祁高月, 陈为海. 苏州市有机垃圾资源化利用现状及展望[J]. 城乡建设, 2019(24): 27-29. [百度学术] 

He S, Qi G Y, Chen W H. Present situation and prospect of organic waste resource utilization in Suzhou[J]. Urban and Rural Development, 2019(24): 27-29. (in Chinese) [百度学术] 

14

李颖, 武学, 孙成双, . 基于低碳发展的北京城市生活垃圾处理模式优化[J]. 资源科学, 2021, 43(8): 1574-1588. [百度学术] 

Li Y, Wu X, Sun C S, et al. Optimization of Beijing municipal solid waste treatment model based on low-carbon development[J]. Resources Science, 2021, 43(8): 1574-1588.(in Chinese) [百度学术] 

15

Wang X Y, Xie B, Wu D, et al. Characteristics and risks of secondary pollutants generation during compression and transfer of municipal solid waste in Shanghai[J]. Waste Management, 2015, 43: 1-8. [百度学术] 

16

Ye Z L, Xie X Q, Dai L H, et al. Full-scale blending treatment of fresh MSWI leachate with municipal wastewater in a wastewater treatment plant[J]. Waste Management, 2014, 34(11): 2305-2311. [百度学术] 

17

Chen W M, Gu Z P, Ran G, et al. Application of membrane separation technology in the treatment of leachate in China: a review[J]. Waste Management, 2021, 121: 127-140. [百度学术] 

18

Wang K, Li L S, Tan F X, et al. Treatment of landfill leachate using activated sludge technology: a review[J]. Archaea, 2018, 2018: 1039453. [百度学术] 

19

Wu D, Huang X H, Sun J Z, et al. Antibiotic resistance genes and associated microbial community conditions in aging landfill systems[J]. Environmental Science & Technology, 2017, 51(21): 12859-12867. [百度学术] 

20

Babaei S, Sabour M R, Moftakhari Anasori Movahed S. Combined landfill leachate treatment methods: an overview[J]. Environmental Science and Pollution Research International, 2021, 28(42): 59594-59607. [百度学术] 

21

Wang F, Smith D W, El-Din M G. Application of advanced oxidation methods for landfill leachate treatment: a review[J]. Journal of Environmental Engineering and Science, 2003, 2(6): 413-427. [百度学术] 

22

Tałałaj I A, Biedka P, Bartkowska I. Treatment of landfill leachates with biological pretreatments and reverse osmosis[J]. Environmental Chemistry Letters, 2019, 17(3): 1177-1193. [百度学术] 

23

Yang P, Liu Y H, Zhang S H, et al. Experimental investigation on the migration of leachate under flowing conditions through laboratory ERT[J]. Environmental Science and Pollution Research International, 2019, 26(17): 17457-17471. [百度学术] 

24

Peng W, Pivato A, Garbo F, et al. Stabilization of solid digestate and nitrogen removal from mature leachate in landfill simulation bioreactors packed with aged refuse[J]. Journal of Environmental Management, 2019, 232: 957-963. [百度学术] 

25

He Z G, Liu Y Q, Wang J L, et al. Enhanced degradation of old landfill leachate in heterogeneous electro-Fenton catalyzed using Fe3O4 nano-particles encapsulated by metal organic frameworks[J]. Journal of Cleaner Production, 2021, 321: 128947. [百度学术] 

26

Arij Y, Fatihah S, Rakmi A R. Performance of pilot scale anaerobic biofilm digester (ABD) for the treatment of leachate from a municipal waste transfer station[J]. Bioresource Technology, 2018, 260: 213-220. [百度学术] 

27

Deng Y, Chen N, Hu W W, et al. Treatment of old landfill leachate by persulfate enhanced electro-coagulation system: improving organic matters removal and precipitates settling performance[J]. Chemical Engineering Journal, 2021, 424: 130262. [百度学术] 

28

Wu C W, Chen W M, Gu Z P, et al. A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment[J]. Science of the Total Environment, 2021, 762: 143131. [百度学术] 

29

Li L F, Fu X M, Ai J, et al. Process parameters study and organic evolution of old landfill leachate treatment using photo-Fenton-like systems: Cu2+ vs Fe2+ as catalysts[J]. Separation and Purification Technology, 2019, 211: 972-982. [百度学术] 

30

李冬, 曹思雨, 王琪, . 低表观气速间歇曝气AGS-SBR系统处理实际生活污水[J]. 中国环境科学, 2021, 41(10): 4588-4596. [百度学术] 

Li D, Cao S Y, Wang Q, et al. Low superficial gas velocity intermittent aeration AGS(aerobic granular sludge) SBR system oftreating domestic wastewater[J]. China Environmental Science, 2021, 41(10): 4588-4596.(in Chinese) [百度学术] 

31

López A, Calero T, Lobo A. Mathematical simulation to improve municipal solid waste leachate management: a closed landfill case[J]. Environmental Science and Pollution Research International, 2018, 25(28): 28169-28184. [百度学术] 

32

Ye Z L, Hong Y P, Pan S Q, et al. Full-scale treatment of landfill leachate by using the mechanical vapor recompression combined with coagulation pretreatment[J]. Waste Management, 2017, 66: 88-96. [百度学术] 

33

Zeng D, Chen G Y, Zhou P, et al. Factors influencing groundwater contamination near municipal solid waste landfill sites in the Qinghai-Tibetan Plateau[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111913. [百度学术] 

34

Deng M J, Kuo D T F, Wu Q H, et al. Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China[J]. Environmental Pollution, 2018, 236: 137-145. [百度学术] 

35

Bakhshoodeh R, Alavi N, Oldham C, et al. Constructed wetlands for landfill leachate treatment: a review[J]. Ecological Engineering, 2020, 146: 105725. [百度学术] 

36

Cheng H Y, Yang A L, Zhang Y T, et al. Adsorption properties of microwave modified diatomite on heavy metals in landfill leachate[J]. IOP Conference Series: Earth and Environmental Science, 2018, 146: 012019. [百度学术] 

37

Fu S, Lu J M, Yuan F Q. Investigation on heavy metals pollution of municipal refuse leachate from Tromsø landfill, Northern Norway[J]. IOP Conference Series: Earth and Environmental Science, 2019, 344(1): 012142. [百度学术] 

38

He H L, Duan Z W, Wang Z Q, et al. The removal efficiency of constructed wetlands filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment[J]. Environmental Science and Pollution Research International, 2017, 24(21): 17547-17555. [百度学术] 

39

Ishchenko V. Prediction of heavy metals concentration in the leachate: a case study of Ukrainian waste[J]. Journal of Material Cycles and Waste Management, 2018, 20(3): 1892-1900. [百度学术] 

40

Xu Y F, Fu Y, Xia W, et al. Municipal solid waste incineration (MSWI) fly ash washing pretreatment by biochemical effluent of landfill leachate: a potential substitute for water[J]. Environmental Technology, 2018, 39(15): 1949-1954. [百度学术] 

41

Zhai Y Z, Ma T Y, Zhou J J, et al. Impacts of leachate of landfill on the groundwater hydrochemistry and size distributions and heavy metal components of colloids: a case study in NE China[J]. Environmental Science and Pollution Research International, 2019, 26(6): 5713-5723. [百度学术] 

42

叶彬. 垃圾转运站渗滤液生化调节与快速处理技术中试研究[D]. 北京: 清华大学, 2011. [百度学术] 

Ye B. Pilot study on MSW transfer station leachate treatment by bio-regulation and rapid process technology[D]. Beijing: Tsinghua University, 2011. (in Chinese) [百度学术] 

43

黄志聪. A/O/N-Fenton-BAF组合工艺处理垃圾焚烧厂渗滤液的研究[D]. 广州: 华南理工大学, 2013. [百度学术] 

Huang Z C. Study of the leachate treatment for waste incineration plant by A/O/N-Fenton-BAF process[D]. Guangzhou: South China University of Technology, 2013. (in Chinese) [百度学术] 

44

Qi C D, Huang J, Wang B, et al. Contaminants of emerging concern in landfill leachate in China: a review[J]. Emerging Contaminants, 2018, 4(1): 1-10. [百度学术] 

45

Wu D Q, Sui Q, Yu X, et al. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: analytical method development and application in Yangtze River Delta, China[J]. Science of the Total Environment, 2021, 753: 141653. [百度学术] 

46

Yu X, Sui Q, Lyu S G, et al. Municipal solid waste landfills: an underestimated source of pharmaceutical and personal care products in the water environment[J]. Environmental Science & Technology, 2020, 54(16): 9757-9768. [百度学术] 

47

Wijekoon P, Koliyabandara P A, Cooray A T, et al. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges[J]. Journal of Hazardous Materials, 2022, 421: 126627. [百度学术] 

48

郑伟俊, 朱卫兵, 涂勇, . 溧阳填埋场渗滤液处理提标改造工程实例[J]. 安徽化工, 2015, 41(1): 85-87, 90. [百度学术] 

Zheng W J, Zhu W B, Tu Y, et al. Upgrading and reconstruction project case in Liyang landfill leachate treatment station[J]. Anhui Chemical Industry, 2015, 41(1): 85-87, 90.(in Chinese) [百度学术] 

49

宋士健, 郑久汉, 廖燕, . MVC-NF工艺在垃圾渗滤液处理中的应用[J]. 浙江化工, 2019, 50(2): 50-52. [百度学术] 

Song S J, Zheng J H, Liao Y, et al. Application of MVC-NF process in landfill leachate treatment[J]. Zhejiang Chemical Industry, 2019, 50(2): 50-52.(in Chinese) [百度学术] 

50

许佳敏. 某生活垃圾填埋场渗滤液处理工程实例[J]. 广东化工, 2015, 42(5): 94-95. [百度学术] 

Xu J M. Project case of leachate treatment in waste landfill site[J]. Guangdong Chemical Industry, 2015, 42(5): 94-95.(in Chinese) [百度学术] 

51

陈刚, 胡啸, 熊向阳, . 沈阳市老虎冲生活垃圾渗滤液全量处理工艺设计[J]. 给水排水, 2017, 53(2): 56-58. [百度学术] 

Chen G, Hu X, Xiong X Y, et al. Design of total treatment process of leachate from laohuchong Household garbage in Shenyang[J]. Water & Wastewater Engineering, 2017, 53(2): 56-58.(in Chinese) [百度学术] 

52

高鑫, 付永胜. 基于两级DTRO膜系统处理垃圾渗滤液的工程应用[J]. 四川环境, 2018, 37(3): 98-104. [百度学术] 

Gao X, Fu Y S. Engineering application of landfill leachate treatment based on two-stage DTRO system[J]. Sichuan Environment, 2018, 37(3): 98-104.(in Chinese) [百度学术] 

53

肖晶, 曹姝文, 胡帆, . 老龄化垃圾填埋场渗滤液处理工程的设计及运行[J]. 中国给水排水, 2013, 29(4): 61-63. [百度学术] 

Xiao J, Cao S W, Hu F, et al. Design and operation of mature landfill leachate treatment project[J]. China Water & Wastewater, 2013, 29(4): 61-63.(in Chinese) [百度学术] 

54

刘立. MBR/RO/MVPC工艺应用于垃圾渗滤液处理改造工程[J]. 中国给水排水, 2019, 35(14): 67-71. [百度学术] 

Liu L. Application of MBR/RO/MVPC process in renovation of landfill leachate treatment project[J]. China Water & Wastewater, 2019, 35(14): 67-71.(in Chinese) [百度学术] 

55

喻泽斌, 孙玲芳, 李瑞华, . 膜组合工艺在垃圾渗滤液处理中的工程应用[J]. 中国给水排水, 2013, 29(6): 84-88. [百度学术] 

Yu Z B, Sun L F, Li R H, et al. Application of combined membrane technology to treatment of landfill leachate[J]. China Water & Wastewater, 2013, 29(6): 84-88.(in Chinese) [百度学术] 

56

郭训文, 简磊, 袁延磊, . A/O-MBR-Fenton-BAF工艺处理垃圾渗滤液工程实例[J]. 广东化工, 2019, 46(18): 96-97. [百度学术] 

Guo X W, Jian L, Yuan Y L, et al. Project example of landfill leachate treatment by A/O-MBR-Fenton-BAF combined process[J]. Guangdong Chemical Industry, 2019, 46(18): 96-97.(in Chinese) [百度学术] 

57

王凯, 武道吉, 彭永臻, . 垃圾渗滤液处理工艺研究及应用现状浅析[J]. 北京工业大学学报, 2018, 44(1): 1-12. [百度学术] 

Wang K, Wu D J, Peng Y Z, et al. Critical review of landfill leachate treatment technologies[J]. Journal of Beijing University of Technology, 2018, 44(1): 1-12.(in Chinese) [百度学术] 

58

李海庆, 秦英杰, 崔东胜, . 支撑气膜法脱除/回收垃圾渗滤液中氨氮[J]. 环境工程学报, 2014, 8(2): 612-618. [百度学术] 

Li H Q, Qin Y J, Cui D S, et al. Removal/recovery of ammonia from landfill leachate by supported gas membrane-based separation process[J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 612-618.(in Chinese) [百度学术] 

59

朱子晗, 李天, 张瑞娜, . 老龄垃圾渗滤液反硝化脱氮的补充碳源应用进展[J]. 环境污染与防治, 2021, 43(4): 502-505, 509. [百度学术] 

Zhu Z H, Li T, Zhang R N, et al. Supplemental carbon sources applications for the denitrification of mature landfill leachate[J]. Environmental Pollution & Control, 2021, 43(4): 502-505, 509.(in Chinese) [百度学术] 

60

陈少明. 某生活垃圾综合处理厂废水处理系统工艺设计实例[J]. 广东化工, 2020, 47(6): 159-160. [百度学术] 

Chen S M. Process design example of wastewater treatment system in a domestic waste comprehensive treatment plant[J]. Guangdong Chemical Industry, 2020, 47(6): 159-160.(in Chinese) [百度学术] 

61

谢詹东, 朱玉龙. 中温厌氧+MBR+NF+RO工艺处理垃圾渗滤液工程设计[J]. 中国给水排水, 2017, 33(24): 74-77. [百度学术] 

Xie Z D, Zhu Y L. Project design of leachate treatment station with medium temperature anaerobic + MBR + NF + RO process[J]. China Water & Wastewater, 2017, 33(24): 74-77.(in Chinese) [百度学术] 

62

曹羡, 梅凯, 李先宁. 加载磁絮凝技术预处理垃圾渗滤液的研究[J]. 东南大学学报(自然科学版), 2017, 47(5): 956-962. [百度学术] 

Cao X, Mei K, Li X N. Study on landfill leachate pretreatment by magnetic flocculation[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(5): 956-962.(in Chinese) [百度学术] 

63

Wu Y H. A preliminary study on application of MBR + NF/RO (membrane bio-reactor + nanofiltration/reverse osmosis) combination process for landfill leachate treatment in China[J]. IOP Conference Series: Earth and Environmental Science, 2018, 182: 012010. [百度学术] 

64

Laureni M, Falås P, Robin O, et al. Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures[J]. Water Research, 2016, 101: 628-639. [百度学术] 

65

Zhang Z Z, Zhang Y, Chen Y G. Recent advances in partial denitrification in biological nitrogen removal: from enrichment to application[J]. Bioresource Technology, 2020, 298: 122444. [百度学术] 

66

Wu L N, Yan Z B, Huang S, et al. Rapid start-up and stable maintenance of partial nitrification-anaerobic ammonium oxidation treatment of landfill leachate at low temperatures[J]. Environmental Research, 2020, 191: 110131. [百度学术] 

67

Li Y Y, Liu Y X, Luo J H, et al. Emerging onsite electron donors for advanced nitrogen removal from anammox effluent of leachate treatment: a review and future applications[J]. Bioresource Technology, 2021, 341: 125905. [百度学术] 

68

王胤, 吴嘉利, 陈一, . 主流厌氧氨氧化工艺的研究与应用进展[J]. 净水技术, 2021, 40(11): 16-27. [百度学术] 

Wang Y, Wu J L, Chen Y, et al. Research and application progress of mainstream anammox process[J]. Water Purification Technology, 2021, 40(11): 16-27.(in Chinese) [百度学术] 

69

尹文俊, 周伟伟, 王凯, . 垃圾渗滤液物化与生化处理工艺技术现状[J]. 环境工程, 2018, 36(2): 83-87. [百度学术] 

Yin W J, Zhou W W, Wang K, et al. Analysis of physical-chemistry and biochemical treatment technologies on landfill leachate[J]. Environmental Engineering, 2018, 36(2): 83-87.(in Chinese) [百度学术] 

70

艾恒雨, 孟棒棒, 李娜, . 中国垃圾渗滤液膜浓缩液处理现状与污染控制建议[J]. 环境工程技术学报, 2016, 6(6): 553-558. [百度学术] 

Ai H Y, Meng B B, Li N, et al. Treatment status and pollution control suggestions for membrane concentrated leachate in China[J]. Journal of Environmental Engineering Technology, 2016, 6(6): 553-558.(in Chinese) [百度学术] 

71

谢锦灯, 李晨冉. 垃圾渗滤液MBR+NF浓缩液全量处理技术应用研究[J]. 能源与环境, 2020(4): 74-76. [百度学术] 

Xie J D, Li C R. Study on the application of MBR+NF concentrate in total treatment of landfill leachate[J]. Energy and Environment, 2020(4): 74-76.(in Chinese) [百度学术] 

72

薛秋玉, 彭磊. 反渗透膜工艺处理垃圾渗滤液的结垢机理研究[J]. 中国资源综合利用, 2021, 39(10): 196-198. [百度学术] 

Xue Q Y, Peng L. Study on the scaling mechanism of the reverse osmosis membrane process in the treatment of landfill leachate[J]. China Resources Comprehensive Utilization, 2021, 39(10): 196-198. (in Chinese) [百度学术] 

73

Zhang Z W, Wu Y H, Luo L W, et al. Application of disk tube reverse osmosis in wastewater treatment: a review[J]. Science of the Total Environment, 2021, 792: 148291. [百度学术] 

74

Lebron Y A R, Moreira V R, Brasil Y L, et al. A survey on experiences in leachate treatment: common practices, differences worldwide and future perspectives[J]. Journal of Environmental Management, 2021, 288: 112475. [百度学术] 

75

安瑾, 陆飞鹏. 浸没燃烧蒸发处理垃圾焚烧厂RO浓缩液[J]. 环境工程, 2018, 36(S): 27-30, 34. [百度学术] 

An J, Lu F P. The submerged combustion evaporation for the treatment of the RO membrane concentrate in waste incineration plants[J]. Environmental Engineering, 2018, 36(S): 27-30, 34. (in Chinese) [百度学术] 

76

丁晶, 关淑妍, 赵庆良, . 垃圾渗滤液膜滤浓缩液处理技术研究与应用进展[J]. 哈尔滨工业大学学报, 2021, 53(11): 1-13. [百度学术] 

Ding J, Guan S Y, Zhao Q L, et al. Research and application status of treatment methods of landfill leachate membrane concentrate[J]. Journal of Harbin Institute of Technology, 2021, 53(11): 1-13. (in Chinese) [百度学术] 

77

张皓贞, 张超杰, 张莹, . 垃圾渗滤液膜过滤浓缩液处理的研究进展[J]. 工业水处理, 2015, 35(11): 9-13. [百度学术] 

Zhang H Z, Zhang C J, Zhang Y, et al. Research progress in the treatment of concentrated solution produced from landfill leachate treated by membrane filtration[J]. Industrial Water Treatment, 2015, 35(11): 9-13. (in Chinese) [百度学术] 

78

褚贵祥, 邹琳. 垃圾焚烧发电厂渗滤液NF浓缩液蒸发处理的试验研究[J]. 黑龙江电力, 2014, 36(6): 554-556. [百度学术] 

Chu G X, Zou L. Experimental research on evaporation treatment of NF concentrated leachate in waste incineration power plant[J]. Heilongjiang Electric Power, 2014, 36(6): 554-556. (in Chinese) [百度学术] 

79

徐丽丽, 聂剑文, 杨新海, . MVC蒸发+DI离子交换在纳滤浓缩液处理中的应用[J]. 环境卫生工程, 2016, 24(4): 67-69. [百度学术] 

Xu L L, Nie J W, Yang X H, et al. Application of mechanical vapor compression-deionization ion exchange in nanofiltration concentrate treatment[J]. Environmental Sanitation Engineering, 2016, 24(4): 67-69.(in Chinese) [百度学术] 

80

刘建伟, 康心悦, 岳鹏, . 城市生活垃圾综合处理厂渗滤液全量化处理工程设计[J]. 中国给水排水, 2020, 36(10): 70-75. [百度学术] 

Liu J W, Kang X Y, Yue P, et al. Project design of total quantitative treatment of leachate of urban municipal waste comprehensive treatment plant[J]. China Water & Wastewater, 2020, 36(10): 70-75.(in Chinese) [百度学术] 

81

杜海洋, 杨林, 蒋宇. 膜浓缩液处理工艺分析[J]. 应用能源技术, 2020(7): 12-14. [百度学术] 

Du H Y, Yang L, Jiang Y. Analysis of membrane concentrated liquid treatment process[J]. Applied Energy Technology, 2020(7): 12-14.(in Chinese) [百度学术] 

82

袁鹏飞, 刘亚琦, 张寒旭, . 硅藻土负载纳米Fe3O4催化臭氧处理渗滤液膜滤浓缩液混沉出水[J]. 华侨大学学报(自然科学版), 2020, 41(2): 215-222. [百度学术] 

Yuan P F, Liu Y Q, Zhang H X, et al. Nano-Fe3O4/diatomite catalytic ozone treatment of leachate membrane filtration concentrate[J]. Journal of Huaqiao University (Natural Science), 2020, 41(2): 215-222.(in Chinese) [百度学术] 

83

曹春华, 浦燕新, 朱卫兵. 沈渎填埋场渗滤液处理提标工程实例[J]. 中国给水排水, 2013, 29(14): 86-89. [百度学术] 

Cao C H, Pu Y X, Zhu W B. Upgrade project for leachate treatment at shendu landfill site[J]. China Water & Wastewater, 2013, 29(14): 86-89. (in Chinese) [百度学术] 

84

Pisharody L, Gopinath A, Malhotra M, et al. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes[J]. Chemosphere, 2022, 287: 132216. [百度学术] 

85

Chemlal R, Azzouz L, Kernani R, et al. Combination of advanced oxidation and biological processes for the landfill leachate treatment[J]. Ecological Engineering, 2014, 73: 281-289. [百度学术] 

86

Zeng H B, Zhang G, Ji Q H, et al. pH-independent production of hydroxyl radical from atomic H*-mediated electrocatalytic H2O2 reduction: a green Fenton process without byproducts[J]. Environmental Science & Technology, 2020, 54(22): 14725-14731. [百度学术] 

87

Usman M, Cheema S A, Farooq M. Heterogeneous Fenton and persulfate oxidation for treatment of landfill leachate: a review supplement[J]. Journal of Cleaner Production, 2020, 256: 120448. [百度学术] 

88

Zhu Y P, Zhu R L, Xi Y F, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review[J]. Applied Catalysis B: Environmental, 2019, 255: 117739. [百度学术] 

89

Wang Z, Li J B, Tan W H, et al. Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis[J]. Separation and Purification Technology, 2019, 208: 3-11. [百度学术]