摘要
采用高性能Kevla
关键词
目前电磁辐射已成为继噪音、水和空气污染之后的第四大公共污染
芳
制备导电芳纶的方法有很多种,其中化学镀技术作为一种环保型的表面处理方法,以其工艺简便、镀层均匀、能在非导体上沉积具有特殊功能的镀层等特点,已经成为导电芳纶的研究热点。常规化学镀要求在镀覆之前通过化学或物理方法对芳纶光滑表面进行粗化、敏化和活化处
笔者以全对位芳纶Kevla
实验织物采用由杜邦 Kevla

图1 全对位芳纶Kevla
Fig. 1 Structural formulas of aromatic Kevla
使用的仪器见
实验仪器名 | 仪器型号 | 生产厂家 |
---|---|---|
电子分析天平 | BSA224S-CW | Mettler Toledo 仪器有限公司 |
电子恒温水浴锅 | HWS-24 | 上海一恒科学仪器有限公司 |
超声波清洗机 | JP-020S | 深圳洁盟清洗设备有限公司 |
加热磁力搅拌器 | MS-H280-Pro | 大龙兴创实验仪器股份公司 |
电热鼓风干燥箱 | DHG-9070A | 上海一恒科学仪器有限公司 |
真空烘箱 | DZF-6030A | 上海一恒科学仪器有限公司 |
超纯水器 | GWB-1/super | 北京普析通用仪器有限公司 |
pH计 | S210-S | Mettler Toledo 仪器有限公司 |
矢量网络分析仪 | R&S, ZNB20 | ROHDE&SCHWARZ |
拉伸试验机 | MT10809 | Deben |

图2 实验流程图
Fig. 2 Experimental flow chart
1) 超声除油。将Kevla
2) 硝酸银活化。将除油后的织物浸入0.1 mol∙
3) 硼氢化钠还原。将活化、漂洗过的织物浸入质量分数0.3%的硼氢化钠溶液,室温下还原10 min,取出后洗净、烘干;
4) 化学镀镍。化学镀镍的配方及施镀条件见
成分 | 镀镍溶液 |
---|---|
六水合硫酸镍 | 20 g/L |
二水合柠檬酸三钠 | 30 g/L |
一水合次磷酸钠 | 4 g/L |
二甲氨基硼烷 | 1 g/L |
十二烷基硫酸钠 | 5 mg/L |
pH (使用氨水调节) | 10.0 |
镀液温度 | 45 ℃ |
镀覆时间 | 10~80 min |
镀液体积 | 3 L |
浴比 | 1:1 000 |
采用捷克Nova NanoSEM450台式扫描电子显微镜(SEM)观察样品微观形貌。采用日本电子JEOL高分辨率透射电子显微镜(HRTEM)分析Kevla
采用配备在扫描电子显微镜上的美国Nova Nano 450 X射线能谱(EDS)附件测量镀层织物表面成分,采用Thermo Scientific ESCALAB 250Xi X射线光电子能谱(XPS)测量Ni@Kevla
当电磁射线通过介质时,射线会与介质的分子相互作用,这种现象一般可分为吸收、反射和内部多次反射3种机制。电磁屏蔽效能评估见
屏蔽效能/dB | 屏蔽效率/% |
---|---|
0 | 0 |
10 | 90 |
20 | 99 |
30 | 99.9 |
40 | 99.99 |
50 | 99.999 |
60 | 99.999 9 |
70 | 99.999 99 |
测量电磁屏蔽有很多种方法,本文选取同轴传输线测试,因为它适合测量小型、扁平和薄的导电样品。测量装置外壳如

图3 同轴传输矢量网络分析仪示意图
Fig. 3 Schematic diagram of coaxial transmission vector network analyzer

图4 矢量网络分析仪发射器内部结构图
Fig. 4 The internal structure of vector network analyzer transmitter
对Ni@ Kevla
R=|S11 | (1) |
T=|S21 | (2) |
SEA=10log , | (3) |
SET=10log 。 | (4) |
电磁干扰的屏蔽性能是通过屏蔽效能来评估的,屏蔽效能以分贝(dB)表示。更高的分贝意味着更好的电磁干扰屏蔽性能。
SETotal= SEA+ SET+ SEM 。 | (5) |
当SETotal大于15 dB时,可忽略SEM。
SETotal= SEA+ SET 。 | (6) |
有效吸收效率Aeff可由下式计算:
Aeff= 。 | (7) |
采用无刻蚀、无钯、无锡的活化策略,利用“溶胀-银”技术将大量的A
AgNO3 + NaBH4 + 2H2O→Ag↓+ NaNO3 + H3BO3+ H2↑。 | (8) |

图5 无钯银活化后织物的形貌图
Fig. 5 The morphology of palladium-free silver activated fabric


图6 不同时间镀覆下的Ni@Kevla
Fig. 6 SEM images of Ni@Kevla
采用XPS进一步进行镀层表面的元素分析。


图7 镀Ni@Kevla
Fig. 7 High resolution XPS spectra of Ni@Kevla
元素 | 峰值信息 | 结合能/eV | 权重百分比/% |
---|---|---|---|
Ni |
NiO,2 NiO,2 NiO, 2 NiO, 2 |
855.7 873.8 861.5 879.7 | 100 |
P |
P, 2 | 129.5 | 0 |
B |
B, 1s B, BO |
187.3 191.0 | 0 |

图8 镀Ni@Kevla
Fig. 8 WXRD patterns of Ni@Kevla
浴比一致情况下,不同镀覆时间织物的质量增加率、厚度及镍镀层的面密度数据见
样品名称 | 质量增加率/% | 厚度/mm | 面密度/ (g∙c |
---|---|---|---|
Ni 1 | 27.83 | 0.22 | 0.004 60 |
Ni 2 | 40.15 | 0.24 | 0.006 12 |
Ni 3 | 54.47 | 0.27 | 0.008 48 |
Ni 4 | 60.77 | 0.28 | 0.009 62 |
Ni 5 | 85.80 | 0.33 | 0.014 30 |
Ni 6 | 93.40 | 0.36 | 0.015 60 |
Ni 7 | 136.87 | 0.46 | 0.021 90 |
Ni 8 | 150.01 | 0.48 | 0.024 40 |

图9 不同镀覆时间下Ni@Kevla
Fig. 9 Diagrams of Ni@Kevla
不同镀覆时间的样品表面电阻测量见

图10 化学镀时间对织物表面电阻的影响
Fig. 10 Effect of electroless plating time on surface resistance of fabric
为了获得并比较复合织物的磁性能,在300 K(26.85 ℃),-40~40 T条件下测量了Ni@Kevla

图11 300 K时Ni@Kevla
Fig. 11 M-H curve of the Ni@Kevla
基于ASTM D 4935-1999,研究了样品在0.1 MHz~1.5 GHz电磁波段的屏蔽效能。


图12 不同化学镀时间下Ni@Kevla
Fig. 12 Shielding effect of Ni@Kevla
different electroless plating time
目前各类文献主要报道低频下的电磁屏蔽效应,对高频下的研究较少。这里,对Ni@Kevla


图13 不同化学镀时间下Ni@Kevla
Fig. 13 Shielding effect of Ni@Kevla
under different electroless plating time
首先,当入射电磁波击中具有导电导磁性的Ni@Kevla

图14 Kevla
Fig. 14 Tensile strength of Kevla
为了测试金属化后芳纶织物的耐受性,我们对镀覆30 min下的样品Ni 5(质量增加85.80%)进行弯折,测试反复弯曲相对电阻(R/ R0)的变化如

图15 织物表面电阻测试
Fig. 15 The diagram of fabric surface resistance
得出了一套完整的无刻蚀、无钯、无锡的“溶胀‒银”化学镀高纯镍Kevla
1)通过对Kevla
2)化学镀后获得的Ni@Kevla
3)研究时间变量对镀层结晶结构、质量增加、厚度及电、磁性能的影响,各性能随着时间变化呈现正反馈趋势。30 min后沉积速度逐渐减慢,但由于溶液处于过量状态,镀层会继续缓慢沉积,结构继续完善,80 min的导电、磁导率最佳;
4)利用同轴电磁屏蔽测试法对Ni@Kevla
5)化学镀后获得的Ni@Kevla
参考文献
Oh H J, Dao V D, Choi H S. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction[J]. Applied Surface Science, 2018, 435: 7-15. [百度学术]
Liu C Y, Kang Z X. Facile fabrication of conductive silver films on carbon fiber fabrics via two components spray deposition technique for electromagnetic interference shielding[J]. Applied Surface Science, 2019, 487: 1245-1252. [百度学术]
杨晓军, 封波, 杨志民, 等. 多层金属材料对高能电子的屏蔽效果分析-MULASSIS程序的应用[J]. 稀有金属, 2007, 31(4): 481-485. [百度学术]
Yang X J, Feng B, Yang Z M, et al. Radiation shielding effects simulation of multi-layered metal sheets for high energy electrons-applications of MULASSIS software[J]. Chinese Journal of Rare Metals, 2007, 31(4): 481-485. (in Chinese) [百度学术]
Wang H M, Wang H M, Wang Y L, et al. Laser writing of Janus graphene/Kevlar textile for intelligent protective clothing[J]. ACS Nano, 2020, 14(3): 3219-3226. [百度学术]
Lin Z I, Lou C W, Pan Y J, et al. Conductive fabrics made of polypropylene/multi-walled carbon nanotube coated polyester yarns: mechanical properties and electromagnetic interference shielding effectiveness[J]. Composites Science and Technology, 2017, 141: 74-82. [百度学术]
Tang J B, Zhang X, Wang J, et al. Achieving flexible and durable electromagnetic interference shielding fabric through lightweight and mechanically strong aramid fiber wrapped in highly conductive multilayer metal[J]. Applied Surface Science, 2021, 565: 150577. [百度学术]
Lu Z Q, Jia F F, Zhuo L H, et al. Micro-porous MXene/Aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance[J]. Composites Part B: Engineering, 2021, 217: 108853. [百度学术]
Kwon D J, Kwon I J, Milam-Guerrero J, et al. Aramid nanofiber-reinforced multilayer electromagnetic-interference (EMI) shielding composites with high interfacial durability[J]. Materials & Design, 2022, 215: 110452. [百度学术]
万雷, 吴文静, 吕佳滨, 等. 我国对位芳纶产业链发展现状及展望[J]. 高科技纤维与应用, 2019, 44(3): 21-26. [百度学术]
Wan L, Wu W J, Lv J B, et al. The current situation and prospect of para-aramid industry chain in China[J]. Hi-Tech Fiber and Application, 2019, 44(3): 21-26. (in Chinese) [百度学术]
Lv J W, Cheng Z, Wu H, et al. In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement[J]. Composites Part B: Engineering, 2020, 182: 107608. [百度学术]
Liu W Y, Sun D, Ma H D, et al. Electroless deposition to fabricate radiation protection suits for pregnant women: effect of water bath temperature on the electromagnetic shielding performance[J]. ChemistrySelect, 2021, 6(47): 13409-13413. [百度学术]
Huang J J, Gui C M, Ma H D, et al. Surface metallization of PET sheet: fabrication of Pd nanoparticle/polymer brush to catalyze electroless nickel plating[J]. Composites Science and Technology, 2021, 202: 108547. [百度学术]
Wang S J, Li D S, Jiang L. Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films[J]. Advanced Materials Interfaces, 2019, 6(19): 1900961. [百度学术]
Shahzad F, Alhabeb M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. [百度学术]
Xia X F, Xiao Q L. Electromagnetic interference shielding of 2D transition metal carbide (MXene)/metal ion composites[J]. Nanomaterials, 2021, 11(11): 2929. [百度学术]
Cheng W H, Zhang Y, Tian W X, et al. Highly efficient MXene-coated flame retardant cotton fabric for electromagnetic interference shielding[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 14025-14036. [百度学术]
Jia L C, Xu L, Ren F, et al. Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding[J]. Carbon, 2019, 144: 101-108. [百度学术]
Shao Q S, Bai R C, Tang Z Y, et al. Durable electroless Ni and Ni-P-B plating on aromatic polysulfonamide (PSA) fibers with different performances via chlorine-aided silver activation strategy[J]. Surface and Coatings Technology, 2016, 302: 185-194. [百度学术]
Ma J, Zhao X T, Liu W, et al. Coercivity mechanism and magnetization reversal in anisotropic Ce-(Y)-Pr-Fe-B films[J]. Materials, 2021, 14(16): 4680. [百度学术]
Lan C T, Zou L H, Wang N, et al. Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics[J]. Journal of Colloid and Interface Science, 2021, 590: 467-475. [百度学术]