网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

在侵略性介质中植物提取物基绿色缓蚀剂的研究进展  PDF

  • 陈伶俐 1
  • 石悦婷 1,2
  • 李红茹 1
  • 王新潮 1,3
  • 张胜涛 1
  • 高放 1
1. 重庆大学 化学化工学院,重庆 400044; 2. 重庆文理学院 化学与环境工程学院,重庆 402160; 3. 菏泽学院 药学院,山东 菏泽 274007

中图分类号: O629

最近更新:2023-09-24

DOI:10.11835/j.issn.1000-582X.2021.114

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

在侵略性介质中,金属如碳钢、铜、铝等的腐蚀不可避免并可能造成严重后果,因此防护金属腐蚀非常必要且具有重要意义。与化学合成的有机缓蚀剂相比较,植物提取物基缓蚀剂具有许多独特优点,例如高效率、低成本、可再生与可持续,且符合低碳与绿色化工要求,有利于实现碳达峰与碳中和目标,得到人们极大关注。由于含有许多杂原子基团,植物提取物易与金属发生物理或化学作用形成吸附膜,进而阻碍侵略性物种与金属表面的直接接触,从而阻滞或抑制金属表面的电化学反应,实现在多种侵略性介质中对金属的腐蚀防护,阻止金属溶解。本文重点综述了近二十年植物提取物作为在侵略性介质中抗金属腐蚀材料的研究进展,特别是关于抑制钢腐蚀的研究进展,探讨了其作为有机绿色缓蚀剂的科学基础与应用潜能,并展望了本领域未来研究重点与研究目标,为人们利用探索天然产物基的有机缓蚀剂提供一定指导作用。

金属及其合金,如碳钢、铜、铝等在人类文明发展历史起到重要作用,特别在现代工业、农业、军事、建筑与先进机器设备中居于核心地位。在侵略性介质应用过程中,金属及其合金极易受到离子攻击而造成溶解,发生金属腐蚀, 由此造成的工程灾害总数超过40%[

1]。腐蚀不但使得金属制品的各种力学和延展等性能受到严重影响,且会对行业产生巨大经济损失以及安全甚至生态灾难,因此实现金属材料表面的腐蚀防护具有十分重要的意义。

采取适当保护策略能够减慢金属腐蚀速度,抑制、延缓、甚至完全阻止阳极或阴极反[

2]。当前基于缓蚀剂策略实现金属防护,提升金属使用寿命;该策略具有操作简便、缓蚀效率较好、适应性强以及对原体系伤害较小等优点,吸引人们较大的关注。与无机缓蚀剂相比,有机缓蚀剂在金属表面具有更好的吸附性能从而提高缓蚀作用,成为人们的研究热点。

通常有机缓蚀分子含有极性官能团如‒OH、‒COOC2H5、‒COOH、‒C=O、‒NH2、杂环与离域的π电子的不饱和共价键等,这些高电子密度杂原子作为吸附中心,使得有机分子与金属之间产生强烈相互作用,从而在金属表面形成有机吸附膜以阻断电化学反应的进[

3]

有机缓蚀分子能够基于化学合成进行工业水平上制备,具有极大的应用潜能。另一方面,低碳与绿色化工要求发展低成本、低毒或无毒、环境友好型的金属缓蚀[

4]。很多化学合成的有机缓蚀分子可能无法完全达到绿色化工的要求,所以基于植物提取物的金属缓蚀剂策略成为选择。植物提取物含有丰富的天然有机分子,含有多种/多个杂原子或杂环片段,对金属具有良好的吸附与缓蚀作用。近二十年来,有关植物提取物基缓蚀剂研究层出不穷,却少见相关的综述。推测部分原因是植物提取物通常为粗提物,有关其材料模拟计算较为少见,难以在分子尺度上理解植物提取物的化学结构与缓蚀效率之间的构效关系,选择植物提取物基缓蚀剂仍处于试错阶段,所以不易总结与评价。也正因为如此,关于植物提取物基缓蚀剂值得文献回顾与评论。

在本文中,重点分析讨论了近年来利用植物提取物作为环境友好的有机缓蚀剂在侵略性介质中的防护金属腐蚀研究,特别是抑制钢的腐蚀研究,比较了缓蚀效率与可能的缓蚀机制,并提出了目前的研究难点,展望了未来相关研究重点和方向,旨在为工业上有可能大规模利用植物提取物基有机缓蚀剂提供一定的指导作用。

1 绿色缓蚀剂的缓蚀机制

有机缓蚀剂是指在腐蚀性介质中能够减少或防止金属与介质反应的物质,它通过与金属离子间的络合作用吸附在金属表面上,从而具备降低侵略性物种在金属表面的扩散速率,增加金属表面电阻等作用。有机缓蚀剂在金属/溶液界面上的吸附机理可能包括一步或多步过程,如公式(1)公式(2)所示。第一步,有机分子在金属表面的吸附通常包括替换已吸附在金属表面的一个或多个水分[

5];由于金属氧化或溶解过程,第二步中,有机缓蚀分子与表面新生成的金属离子结合,形成有机金属配合[6],抑制金属溶解。所以在有机缓蚀剂存在下,金属表面多孔膜中的活性或暴露部位被吸附的缓蚀剂所覆盖,从而产生屏障或保护层抑制腐蚀作[7]

Inh(sol)+ xH2O(ads)Inh(ads)+ xH2O(sol) (1)
M2+(aq)+ Inh(ads)[MInh]2+(ads) (2)

2 绿色缓蚀剂的吸附机理

有机缓蚀剂在金属表面吸附能力决定其缓蚀性能。一般认为,在侵略性溶液中,植物提取物基缓蚀剂在金属表面的吸附依赖于金属性质和电荷、吸附模式、有机缓蚀剂分子化学结构和电子特性、温度、空间效应、腐蚀性介质[

8]

不同的吸附等温线如Langmuir、Temkin、Frumkin、Freundlich、Flory-Hugginsand和Bockris-Swinkels可用来分析吸附机制,通常植物提取物作为缓蚀剂主要遵循Langmuir吸附等温线[

9]。必须指出的是,在腐蚀表面的吸附从未达到真正的平衡,而是接近稳态吸附。一般来说,植物提取物在金属表面上的吸附机理可分为物理吸附、化学吸附或这两类吸附的组合,亦称为混合型吸附。

物理吸附通常由于有机分子的带电中心与金属表面之间的静电相互作用,导致分子与分子之间以及分子与金属表面的偶极子存在强非共价键作用力,如范德华力、氢键、π‒π相互作用等;而化学吸附是指电子从有机缓蚀剂转移到金属表面的过程,在金属和缓蚀剂之间形成了强烈的相互作用,其成键强度远远大于物理吸附;吸附模拟如图1。吸附自由能ΔGads0的绝对值低于20 kJ∙mol-1时被认为是物理吸附,高于40 kJ∙mol-1时则为化学吸附,若位于二者之间,则既有物理吸附又有化学吸[

10]

图1  有机缓蚀剂在金属表面吸附示意图

Fig. 1  Illustration of adsorption of organic corrosion inhibitor on metal surface

植物提取物在金属表面表现出化学吸附的有指甲花提取[

11]、甘草提取[12]、山茶提取[13]、棉籽水提取[14]、含羞草提取[15]、胡椒叶提取[16]等,如图2所示。指甲花醌分子和没食子酸分子包含芳香环、苯环、羟基和羰基氧原子,可以作为富含电子的活性吸附中心。研究认为,提取物中的O原子、C原子和苯环的π电子与Fe的空d轨道的孤电子对之间存在着电子转移,有利于提取物与金属之间发生化学作用,并通过共价配位键形成缓蚀剂‒铁络合物(如Fe‒O和Fe‒C)。指甲花提取物中指甲花醌分子与没食子酸在低碳钢表面能够发生强烈的化学吸附,形成致密吸附层,抑制阳极和阴极反应,从而对低碳钢在盐酸溶液中起到缓蚀作用。

图2  低碳钢在含有指甲花叶提取物的0.5 mol/L NaCl溶液中化学吸附示意[

11]

Fig. 2  Chemisorption illustration of mild steel in 0.5 mol/L NaCl solution including Henna leaves extract[

11]

植物提取物在金属表面发生物理吸附的有微藻提取[

17]、黄连提取物黄连[18]、西葫芦叶提取[19]、天然蒿[20]、天然薄荷[21]、中国醋莓果[22]、西瓜皮提取[23]、螺旋藻提取[24]等。如图3所示,微藻提取物中脂肪酸等分子在盐酸介质中,质子化后的有机酸与碳钢表面存在强的静电相互作用,通过范德华力作用在碳钢表面形成吸附层,使碳钢表面的电荷转移变慢,阳极和阴极反应减缓,从而抵抗盐酸溶液对低碳钢的腐蚀攻击。

图3  低碳钢在含有微藻提取物的1 mol/L HCl溶液中物理吸附示意[

17]

Fig. 3  Physisorption illustration of mild steel in 1 mol/L HCl solution including microalgae extract[

17]

部分提取物缓蚀剂属于混合型缓蚀剂(基于吸附机制[

25],包括忍冬草提取[26]、象牙叶提取[27]、卷莲提取[28]、椴树花提取[29]、三叶草提取[30]、黄花叶的生物碱提取[31]、金丝桃提取[32]、紫茉莉叶提取[33]、枳实叶提取[34]、百合叶提取[35]、华柑橘提取[36]、香叶提取[37]等。如图4所示,香叶提取物含有的中性有机分子通过芳香环或不饱和键、杂原子中离域电子等,与低碳钢原子空轨道发生强烈的键合作用,从而在低碳钢表面进行化学吸附。另一方面,酸溶液能够质子化提取物中的有机分子,故而携带正电荷的有机分子与碳钢表面之间存在较强的范德华力,从而发生物理吸附。因此,通过混合型吸附,香叶提取物在碳钢表面形成致密浓厚的吸附膜,可有效抑制低碳钢在盐酸溶液中被腐蚀。

图4  低碳钢在含有香叶提取物的1 mol/L HCl溶液中混合吸附示意[

37]

Fig. 4  Mixed adsorption of mild steel in 1 mol/L HCl solution including Aloysia citrodora leaves extract[

37]

综上,可以通过植物提取物基缓蚀剂分子吸附在金属底物的活性位点上,减少阳极金属溶解和阴极氢演化反应来抑制电化学反[

38]。此外,缓蚀剂分子吸附能够减少金属基底在腐蚀性介质中的暴露的活性表面积,进一步抑制金属腐蚀。

3 植物提取物的提取、分离与纯化

植物提取物是指使用物理萃取或提取法、化学试剂浸泡法和生物发酵法处理植物性原料的全株或部分,从而得到有效成分结构未发生改变的液体或固体物质;它包括有黄酮、多酚、萜类等几百种,具有一定的极性,可溶于许多有机溶剂中。而对植物材料中生物活性化合物的定性和定量研究主要为对其进行适当的提取、分离及纯化。

3.1 植物提取物的提取工艺

常用的植物提取工艺有传统的水提法、醇提法,此类方法具有操作简单且成本低的常见优点。对水提法而言,它安全性高且可以最大程度保护多糖结[

39-40];醇提法相较水提法而言更易于实现工业化生[41]。这两种方法具有共同缺陷,如较长的萃取时间、较低的提取率,大量溶剂的蒸发、低萃取选择性和热不稳定化合物的热分解等。

在克服传统提取方法的这些局限性同时,一系列新的高效的提取工艺诞生,如微波辅助萃取、超声辅助提取、超临界CO2萃取、酶解法等,这些方法也各有所长。微波辅助萃取能大大节省提取时间和能量,最大限度地提高提取物的回收率,提高提取物的供电子能力,适用于大样本序列的快速提[

42];但该法具有对细胞结构的破坏作用较大,易造成溶剂残留以及导致多糖结构变化等影[43]。超声辅助提取具有使用低溶剂体积、很少的仪器要求,以及经济友好且绿色环保等优[44],但目前已有的超声仪容量无法实现工业化生[45]。超临界 CO2萃取法同时具有微波法和超声法的优点,在超临界流体的减压过程中,可以轻松地绕过常规提取过程中溶质的分离,从而节省时间;且该法在室温下工作,是提取热不稳定化合物的理想方法。但此法会因高压使物性数据缺失,投资费用极高,且对安全要求[46]。酶解法提取条件最温和,反应速度极快,然而此法成本较高,对设备和技术要求也高,具有很大的局限[47-48]

3.2 植物提取物的分离与纯化

成功提取粗提物后,提取物的分离、纯化也是获取有效成分的关键。随着分离、纯化技术的不断发展,常用于植物有效组分的分离纯化新技术有:膜分离、吸附法、高速逆流色谱等。

膜分离通常在常温下操作,是分离热敏性物质的一种有效的方法。目前膜分离技术已被广泛应用于植物有效成分如生物碱、黄酮、酚酸类、皂苷类、萜类、甙类、多糖、植物色素的分[

49],如Castro-Mu[50]使用膜技术高效提取和纯化甜叶菊的天然甜味剂甜菊糖苷。膜分离技术具有操作便捷、高效节能、绿色无污染等优点。

吸附法主要利用具有吸附性能的材料对目的产物进行吸附及洗脱,从而得到纯度较高的分离物。目前为止,常见的吸附剂有大孔树脂、分子印迹、炭材料、PVPP、介孔二氧化硅[

51]。Che Zain[52]研究了大孔树脂对油棕榈叶提取物中定向素、异联素、维联素的吸附解吸特性及富集,结果显示,树脂对靶向类黄酮c-苷具有最佳的吸附能力;Alipour[53]合成了均匀的球形分子印迹聚合物纳米粒子,用于选择性和高效地从丹参叶提取物中提取天然抗氧化剂迷迭香酸;Lee[54]使用颗粒活性炭处理的不同有机质含量的土壤研究了生菜中全氟辛酸和全氟辛烷磺酸的吸附和吸收;Sun[55]利用中孔炭纯化葡萄叶中提取的白藜芦醇;Jankowiak[56]研究了PVPP 对豆渣提取物中异黄酮的吸附;Yang[57]研究了鳄梨叶提取物负载在介孔二氧化硅上的吸附等。吸附法具有操作简单、高效节能,并且大多数情况吸附剂可再生循环利用等优点。

高速逆流色谱(HSCCC)是一种现代色谱分离和制备技术,由于其持续的高效率、高回收率和制备大量化合物的能力,HSCCC可以直接应用于粗提取物,由其分离得到的化合物只依赖于不同的溶解度属性,不会因为了避免短缺等样品损失而造成不可逆吸附和分析物变性而引起表面化学反[

58]。因此,HSCCC在植物纯化分离领域被广泛应用,特别是植物活性成分的提取和分离,目前已成为一种新型的全球分离纯化技术。如:Jiang[59]研究了HSCCC从植物材料中获取姜黄素,Liang[60]使用HSCCC从植物种子油和乳酸菌培养物中纯化抗真菌羟基不饱和脂肪酸等;此外它还广泛应用于黄酮类化合物的分离纯化。

现有的一些方法仍然存在一定的应用缺陷及缺乏足够的实验数据;随着现代工业生产对提取植物活性化合物的需求不断增长以及富含这些活性化合物的商品的经济意义日益增加,可能会使得研究者们在未来找到更精良更高效的植物提取物有效成分精确筛选方法。

4 植物提取物的缓蚀性能

电化学分析用来测试植物提取物的缓蚀性能,主要基于动电位极化法(potentiodynamic polarization, PDP)和电化学阻抗谱法(electrochemical impedance spectroscopy, EIS)。

4.1 动电位极化法

PDP是一种通过电化学测量绿色植物提取物缓蚀剂效率、腐蚀速率和分析腐蚀-缓蚀机理的方法,以Tafel图表示出来。这种方法能对金属的腐蚀电位(Ecorr)、腐蚀电流(Icorr)、Tafel阳极和阴极斜率(βaβc)等参数进行准确测量,进而对缓蚀剂的缓蚀性能进行评[

61]

通过分析阴极和阳极Tafel曲线变化趋势,可以推测植物提取物作为缓蚀剂是如何影响阳极或阴极反应,即阳极抑制还是阴极抑制,或者两者混合,由此暗示缓蚀剂是阴极还是阳极缓蚀剂。图5所示为低碳钢样品在不同浓度紫叶提取物存在下的1 mol/L HCl中的电位动力学极化[

62]。可以观察到,极化曲线移动到阴极区域(600 μg/g样品除外),说明阴极相互作用比阳极相互作用对钢腐蚀更有效。进一步观察发现,随着紫叶提取物浓度的增加,腐蚀电流密度(icorr)呈现降低的趋势,且阴极域曲线都是平行的,表明阴极反应机制保持不变;随着紫叶提取物浓度增加,阳极域的形状发生了明显变化。总体来说,紫叶提取物的存在影响了低碳钢在酸性溶液中的溶解机理,通过混合阳极/阴极保护机制控制盐酸对低碳钢表面的侵蚀。

图5  低碳钢样品在含有不同浓度的紫叶提取物1 mol/L HCl介质中的电位动力学极化[

62]

Fig. 5  Potentiodynamic polarization diagrams for the mild steel samples in 1 mol/L HCl media including different concentrations of Ziziphora leaves extract[

62]

4.2 电化学阻抗光谱

交流阻抗法(EIS)也是一种被广泛使用的电化学研究方法。交流阻抗测试中的基本等效电路如图6,其中Rs是工作电极和参比电极之间的溶液电阻,Rt是金属基体/溶液两相界面上腐蚀反应的电荷传递电阻,Rct(Ω∙cm2) 是电子或离子穿过吸附膜的传输电阻,Cdl和CPE分别是用来代替双电层电容和吸附膜电容的常相位角元[

34]

图6  交流阻抗测试中的基本等效电路

Fig. 6  The equivalent circuit of EIS test

EIS的阻抗参数包括RpCdl和IE%可以通过等效电路从Nyquist图中获得。从EIS曲线可以推测电荷转移电阻和双电层电容对金属腐蚀-缓蚀的影响作用及阴极和阳极反应是否依赖于电荷转移电阻和双电层,因此可以进一步推测缓蚀机制。如对3.5% NaCl空白溶液和含有豆蔻提取物3.5% NaCl溶液中进行了303 K下的EIS测[

63]图7显示了空白和存在豆蔻提取物时的Nyquist图,两者比较发现,豆蔻提取物存在下的半圆形直径增加,这表明其对低碳钢具有良好抗腐蚀性能。此外,发现豆蔻提取物存在时的Rct值较高,Cdl值较低,说明豆蔻提取物吸附层使得低碳钢表面的钝化率提高。

图7  303 K下,低碳钢电极在含有250 mg/L豆蔻提取物的3.5%氯化钠中的Nyquist[

63]

Fig. 7  The Nyquist plot for mild steel immersed in 3.5% of NaCl in the absence and presence of 250 mg/L of E. cardamomum at 303 K[

63]

5 植物提取物在酸介质中作为金属缓蚀剂

盐酸及硫酸溶液是酸洗过程中最常用的酸溶液之一,已被广泛用于不同酸洗工艺中金属和合金清洗的防垢[

64]。研究发现,许多植物提取物可作为酸洗过程中有效的缓蚀[65-66]。很早利用植物提取物如红豆和芦荟(叶)、橙、芒果和石榴(果皮)提取物对HCl中低碳钢、铝、锌和铜等抑制腐蚀作用;也有研究了木瓜、辣椒、决明子、辣椒籽、油菜和萝卜汁液提取物对HC1溶液中低碳钢溶解的影响。而在H2SO4介质里,咖啡酸、黑孜然和小檗碱(一种从菜豆中分离的生物碱)可作为低碳钢缓蚀[67]

结果发现这些植物提取物抑制金属腐蚀与所使用的金属、缓蚀剂浓度、酸(类型、浓度、温度)等有关,尤其与提取物的化学组成即吸附活性中心有重要依赖关系。

5.1 吸附活性中心

白茶提取物可作为低碳钢在1 mol/L HCl溶液中的缓蚀[

68],最大缓蚀效率为96%;研究表明,提取物中的-OH、芳香环、C=C、C=O和C-O-C有助于在金属表面形成吸附层。榕树果实提取物中含有的杂原子和芳香环帮助其在低碳钢表面发生吸[69],并抑制H2SO4溶液对低碳钢的腐蚀。最近发现含有大量黄酮类化合物的水葫芦叶提取[70],其含氧极性官能团可与Fe的空d轨道形成配位键,进而发生化学吸附,从而有效屏蔽了H2SO4介质对钢表面的腐蚀。葵花籽壳提取物中因含有氧氮杂原子和芳香化合物环,能够与金属离子发生有效的化学络合,在碳钢表面形成吸附保护膜,避免普通碳钢在盐酸中被腐[71]

类似例子还有:含有芳香和氧官能团的活性成分芒果叶片提取[

72],含有许多基于氮和氧的电子供体原子的豆水种子提取[73],含有蛋白质大分子的绿藻叶提取[74],以及存在大量官能团和杂原子对的千里光植[75]等,都可以在金属表面发生吸附作用,并在侵略性酸溶液中起到缓蚀作用。

近年来所研究的大多数植物提取物中主要吸附成分含O的研究居多。如三聚白藻提取物中抗氧化黄酮和多酚化合[

76],如图8所示,该有效成分吸附在铜表面能够作为混合型缓蚀剂在HCl介质中抑制铜被腐蚀。紫檀叶提取物在H2SO4中对铜能够起到有效缓[77],分子中缓蚀组分的分子示意图如图9所示,材料模拟计算结果表明分子(a)(b)(c)(d)都可能在铜表面具有吸附性质。

图8  三聚白藻提取物主要缓蚀成分的化学结[

76]

Fig. 8  Chemical structures of the main anti-corrosion components of Atriplex leucoclada extract[

76]

图9  紫檀叶片主要缓蚀成分的化学结[

77]

Fig. 9  Chemical structures of the main anti-corrosion components of acquire Artocarpus heterophyllus Lam leaves[

77]

图10(a)显示了铜在0.5 mol/L H2SO4环境下浸泡10 h的三维地形,整个铜表面已严重腐蚀,腐蚀孔与丘陵地貌相似。图10(b)为整个铜表面的对角线二维地形和平均粗糙度值(Ra),可以发现,腐蚀孔的波槽和峰可达到50 nm,Ra值接近20 nm。图10(c)显示了铜样品在含有500 mg/L紫檀叶片提取物存在下的0.5 mol/L H2SO4环境下,在303 K下浸泡10 h的三维地形图。10(d)表示整个铜表面的对角线二维形貌和Ra值,将铜样品在含500 mg/L提取物H2SO4 环境中浸泡10 h后,得到整个铜表面的粗糙度是3.2 nm。结果表明,紫檀叶片提取物能有效吸附在铜表面,并抑制铜在H2SO4介质中的腐蚀发生。

  

  

图10  铜样品在303 K下不同介质中浸泡10 h后的形[

77]

Fig. 10  Morphology of copper samples immersed in different media at 303 K for 10 h[

77]

藜麦种子提取物能够抑制碳钢被HCl溶液侵[

78],分子模拟计算结果表明提取物中含氧官能团是吸附在金属表面的位点。图11为藜麦种子提取物的吸附行为示意图,图11(a)显示在没有缓蚀剂存在时,腐蚀性氢离子吸附在钢基板上,水和氯离子也吸附在表面。然而当藜麦种子提取物加入到侵略性溶液中时,表现出两个缓蚀作用途径:竞争和协同,如图11(b)和11(c)所示。图11(b)显示了竞争途径,吸附的主要是含杂原子的缓蚀剂分子、氯离子和H3O+图11(c)则显示了在协同机制中,水分子和一个大体系(含有氯离子、氢离子和缓蚀剂分子)吸附在表面,氯离子作为配体,在缓蚀剂分子和金属表面之间建立桥梁。

图11  藜麦籽提取物在金属表面的吸附模[

78]

Fig. 11  Adsorption model of quinoa seed extract on metal surface [

78]

强玉[

79]提取了银杏叶提取物,并在不同温度下用电化学方法对其在1 mol/L HCl溶液中对X70钢的缓蚀性能做了系统研究。结果表明,银杏叶提取剂属于混合抑制机制的缓蚀剂,并在一个较宽的温度范围内都保持了优良的缓蚀效果,这归因于提取剂的主要组分在X70钢表面形成的致密且稳定的吸附膜可以有效阻碍腐蚀性物种对钢基底的攻击。提取物的主要化学组成如图12(a)~(d)所示,它们都含有共轭S结构,如苯环和各种官能团(O‒H、N‒H、C=O、C=C、C=N、C‒N、C‒O),且以O原子为主要吸附成分。

图12  银杏叶提取物主要化学组分的分子结[

79]

Fig. 12  Chemical structures of main chemical constituents of Ginkgo biloba leave extract[

79]

图13显示了298 K时X70钢在含200 mg/L银杏叶提取剂的1 mol/L HCl溶液中的零电荷电势图,变化规律为抛物线形式,其最小值即EPZC值为-0.501 V。在相同条件下钢的EOCP值(-0.471 V)高于其EPZC值,表明X70钢表面带正电,Cl-会首先吸附在带正电的X70钢表面上,导致钢表面带负电;而后,银杏叶提取物中主要有机分子以质子化形式通过静电相互作用吸附在带负电的钢表面上,这些分子形成紧凑致密的吸附层,起到防止钢腐蚀的作用。除了这种物理吸附模式外,中性和阳离子形式的有机分子可以通过杂原子向Fe的空d轨道提供电子对而形成共价键,产生化学吸附。这也表明银杏提取物可做混合抑制剂对碳钢发生缓蚀作用。

图13  298 K X70钢在含200 mg/L银杏叶提取剂的1 mol/L盐酸溶液中的零电荷电势[

79]

Fig. 13  Plots of Cdl vs. applied potential of X70 steel in 1 mol/L HCl containing 200 mg/L ginkgo biloba extract at 298 K[

79]

与此类似,很多植物提取物基缓蚀剂是以O原子为主要吸附位点,如石竹叶提取[

80]、南瓜皮提取[81]、葡萄籽原花青素提取[82]、香菇叶提取[83]等。

在目前对植物提取物的研究中,以S、P等杂原子为主要吸附成分的提取物较为少见。但有研究已经证实,在分子结构上同时具有N和S的化合物与仅含N或S的化合物相比具有更好的抗腐蚀性质,而且含S化合物一般具有较优秀的缓蚀能力,通常认为S提高电子供体能力并产生较强的吸附作[

84];Chakravarthy[85]研究了烟酰胺(广泛存在于动植物中,植物中以豆类、花生的含量较丰富,其次存在于蘑菇、坚果之中)衍生物。如图14所示,对盐酸溶液的腐蚀作用及吸附性能研究中发现,含硫化合物(c)和(d)的缓蚀性能高于(a)和(b)。

图14  烟酰胺衍生物分子结[

85]

Fig. 14  Molecular structures of nicotinamide derivatives[

85]

5.2 协同作用

植物提取物基有机缓蚀剂具有一个普遍的缺点,在低浓度下不易实现高的缓蚀效率;特别是在环境温度和酸介质浓度增加后缓蚀效率会急剧下降,严重制约了其大规模应用。将植物缓蚀剂复配是提高其缓蚀性能的一个有效策略,如将植物提取物与卤素阴离子、其他阴离子或与金属阳离子之间发生协同反应,此法可以减少缓蚀剂使用量,并使缓蚀剂应用环境多样化。

研究发现稀土铈(IV)离子对香兰素(香荚兰的种子提取物)在1 mol/L H2SO4溶液中冷轧钢(CRS)具有协同缓蚀作[

86]。虽然铈(IV)离子的缓蚀效果几乎可以忽略不计,与香兰素复配后却显著提高了抑制腐蚀性能,远高于二者单独缓蚀效率的总和;FT-IR和XPS光谱研究发现,在Ce4+的存在下,香兰素形成的保护膜是由氧化铈和Ce4+-香兰素复合物组成。二价阳离子 (Ba2+、Sr2+、Ca2+和Zn2+) 与香兰素协同作用也能大大提高金属的缓蚀性[87],如Ba2+、Sr2+、Ca2+可以阻碍阳极离子的溶解,而Zn2+则影响了阳极和阴极铁的溶解过程。

卤化物作为复配阴离子应用于提高绿色植物基的缓蚀效率。研究认为,卤化物阴离子优先吸附在金属表面,并通过在金属表面和缓蚀剂的正端之间形成中间桥来提高缓蚀效[

88]。在卤化物离子存在时,有机物质的腐蚀抑制机制通常归因于卤化物离子在金属表面的强吸附,其中化学吸附离子进入金属表面电荷的金属部分;卤化物离子的协同效应一般遵循I->Br->Cl-,可能的原因是由于碘离子比其他卤化物离子半径大、疏水性高、电负性低。

已有报道一些植物提取物和卤化物之间的协同作用,如研究了在枫叶提取物中添加碘化钾(KI)作为HCl溶液中碳钢的缓[

89]。研究发现,KI与提取物之间存在明显协同效应。如前所述,从实验结果推断出来主要是由于I-将金属表面离子其电荷转化为负电荷或更少的正电荷,从而通过库仑引力在钢表面上更快地吸附质子化缓蚀剂,因此,缓蚀剂不是直接吸附在金属表面。这种离子对的相互作用增加了金属表面的覆盖范围,从而减少了金属的溶解。缓蚀剂通过与吸附的碘离子静电作用拖入双层,在金属表面形成离子对。协调作用使得该缓蚀剂的保护金属能力增强,且碘离子在金属表面的吸附导致了电双极管的充电,缓蚀效率更高。KI对1 mol/L HCl溶液中钢表面的缓蚀剂的吸附机理的影响示意图如图15所示。

图15  KI1 mol/L盐酸溶液中钢表面缓蚀剂吸附机理的影响示意[

88]

Fig. 15  Schematic representation of the effect of KI on the inhibitor adsorption mechanism of the steel surface in 1 mol/L HCl solution[

88]

此外,添加KI可协同提高椰子壳提取物作为0.5 mol/L H2SO4溶液中低碳钢缓蚀剂的缓蚀性[

90]。卤化物添加剂KCl、KBr、KI与绿藻叶提取[74]协同作用提高了碳钢在盐酸和硫酸体系中的抑制效率。类似的研究还有山茱萸提取[91]、中国龙竹竹叶提取[92]、刺五加叶和茎提取[93]等。也有利用其他阴离子,如十二烷基硫酸钠与马齿苋提取[94]协同作用,也能提高St37钢在盐酸中的缓蚀效率。

其次,还有将植物提取物与纳米材料协同发挥缓蚀作用。Ituen 等利用核桃壳合成了一种用来处理石油废水的新型纳米级生物基纳米复合材料-核桃壳提取物-银纳米颗粒(WHE-AgNPs)[

95],并且研究了WHE-AgNPs对管道钢防腐作用的程度和机理,结果也表明该复合物的协同作用对管道钢起到了很好的缓蚀作用。

6 其他腐蚀介质

相对不常见的酸性介质中的腐蚀,有草酸、硝酸等。有研究者利用橄榄叶提取物作为10%磺胺酸(NH2SO3H)溶液中碳钢的缓蚀剂缓解碳钢腐[

50]。电位动力学极化曲线证明,橄榄叶提取物在10%NH2SO3H溶液中作为钢腐蚀的混合缓蚀剂,添加橄榄叶提取物可增加电荷转移电阻和降低双层电容,该提取物在钢表面发生物理吸附。也有基于稻草提取物缓蚀[96]抑制铜在2 mol/L HNO3中腐蚀,番红花水提取[97]在0.5 mol/L H2C2O4中抑制罐子材料(锡板)的腐蚀等,使用扫描电子显微镜和能量色散x射线对线板表面进行分析,证实了含氧分子有助于缓蚀剂在金属表面形成吸附层。

许多盐类介质中金属缓蚀也有报道。苦叶斑鸠菊提取物对3.5% NaCl溶液中混凝土中碳钢腐[

98],通过物理作用形成吸附层;桃渣水醇提取液在0.5 mol/L NaCl溶液的中在钢表面形成吸附保护[99]。一些报告证实指甲花茎提取[100]、芹菜种子的水提取[101]、大麻、黄花、香豆、番荔枝提取[102]、梅叶提取[103]等可用于碱类介质中作为缓蚀剂,但相关研究极少。也有在两种不同介质如酸与盐或盐与碱介质同时起到缓蚀作用的植物提取物,如在NaCl(质量分数2%)与HCOOH(质量分数1%)共存的介质中采用番茄皮废弃物中的果胶作为锡缓蚀[104]

图16可以看出,近70%的植物提取物的缓蚀介质为酸体系,碱体系的极少。植物提取物基缓蚀剂大多归于混合缓蚀作用机制,可以同时减少阳极金属溶解和阴极氢演化反应来抑制电化学反应;而作为纯粹的阳极抑制剂及阴极抑制剂用于抑制金属缓蚀的植物提取物则较为少见。其次,缓蚀剂通过吸附在金属表面形成单层或双层及多层保护层以延缓及抑制金属的腐蚀,植物提取物在金属表面上的吸附机理多为物理吸附,化学吸附其次,而既有化学吸附又有物理吸附的缓蚀剂则较为稀少。大多数植物提取物的缓蚀效率达到或超过90%,这表明植物提取物基缓蚀剂用来防护或者延缓金属腐蚀具有较好的应用潜能。

图16  金属及合金腐蚀介质和植物提取物研究介质占比

Fig. 16  Corrosion media to metal and its alloy, and proportions of plant extract research medium

7 结论与展望

植物提取物具有易获得、成本低、对环境友好、可再生等优点,并含有极性官能团如‒OH、‒CH3、‒COOH、‒OCH3、‒COOC2H5、‒NH2、杂环和共轭键等作为活性吸附中心,与金属发生相互作用,在金属表面形成吸附保护膜,为它们成为广泛应用的绿色缓蚀剂提供可能。

另一方面,植物提取物作为有机缓蚀剂,与化学合成的有机缓蚀剂比较,仍然面临几个重要的问题:1)通常植物提取物是粗提物,因此在与金属发生作用过程中,提取物中多个组分可能存在过度竞争,使得无论物理相互作用或是化学相互作用都会受到影响,所以在金属表面形成的吸附层的质量难以达到理想状态,在较低浓度下的缓蚀效率无法得到最优;2)由于多种组分的存在,使得在分子尺度上理解和构建植物提取物的化学结构与缓蚀效率之间的构效关系难以实现。因此,选择何种植物提取物作为缓蚀剂很难得到理论上深入指导,存在着很大盲目性,不得不依靠试错策略;3)由于植物生长易受到环境、温度等各种因素影响,植物提取物的缓蚀性能的重复性需要提高。

因此,针对植物提取物基缓蚀剂面临的这些问题,可能未来相关几个方面研究需要得到重视:1)精细提取植物中的主要成分,特别是主要组分的化学结构确定成为必须;2)基于植物提取物的不同组分的缓蚀作用,使得人们在不同腐蚀介质和金属基质方面实现有效的金属抗腐蚀成为可能;3)在实验研究和分子模拟上建立系统的分子结构-缓蚀性能之间的构效关系,为确定吸附机制和金属腐蚀-缓蚀机制成为可能,有望指导人们选择何种植物提取物作为高效有机缓蚀剂;4)某些含量较少的但是携带多个杂环或者不饱和键或者芳香环的单一组分要给予关注,有可能使得我们发现高效环境友好的新型缓蚀剂;5)植物提取物的主要组分的简便化学改性值得关注与研究,有可能为发展新的绿色缓蚀剂开辟路径;6)植物提取物作为有机缓蚀剂的同时,其化学结构特点可以尝试进行与药物之间的偶联,有可能实现对金属的生物抗污作用;7)将植物提取物与其他化合物进行缓蚀协同研究,可能使其在较低的浓度下实现高的缓蚀效率。

基于绿色化工和绿色环境工程要求,植物提取物由于其生物降解、易于获得、廉价、无毒、可再生和可持续性,作为有机缓蚀剂具有极大优势。综合所有研究来看,在该领域的未来研究可以在更广泛的循环经济背景的方向上展开,建议增加对植物提取物及其生物质废物的研究数量,且可以适当降低缓蚀剂的价格和运营成本,在工业规模上增加其产量。最后,尽管目前由于分子提纯与鉴定上存在挑战,使得人们在原子-分子水平上理解植物提取物基作为有机缓蚀剂存在较大困难,并且难于实现在低浓度下的高缓蚀性能;但相信随着植物提取的精细化、明确化与工业化水平的发展,使得大规模应用植物提取物作为高效环境友好的有机缓蚀剂成为可能。

参考文献

1

Petrovic Z. Catastrophes caused by corrosion[J]. Vojnotehnicki Glasnik, 2016, 64(4): 1048-1064. [百度学术] 

2

Ikeuba A I, Okafor P C. Green corrosion protection for mild steel in acidic media: saponins and crude extracts of Gongronema latifolium[J]. Pigment & Resin Technology, 2019, 48(1): 57-64. [百度学术] 

3

Cotting F, Aoki I V. Smart protection provided by epoxy clear coating doped with polystyrene microcapsules containing silanol and Ce (III) ions as corrosion inhibitors[J]. Surface and Coatings Technology, 2016, 303: 310-318. [百度学术] 

4

Khan G, Newaz K M S, Basirun W J, et al. Application of natural product extracts as green corrosion inhibitors for metals and alloys in acid pickling processes-A review[J]. International Journal of Electrochemical Science, 2015, 10(8): 6120-6134. [百度学术] 

5

Bastidas J M, Polo J L, Cano E, et al. Tributylamine as corrosion inhibitor for mild steel in hydrochloric acid[J]. Journal of Materials Science, 2000, 35(11): 2637-2642. [百度学术] 

6

Oguzie E E, Li Y, Wang F H. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion[J]. Journal of Colloid and Interface Science, 2007, 310(1): 90-98. [百度学术] 

7

El-Etre A Y. Natural honey as corrosion inhibitor for metals and alloys. I. copper in neutral aqueous solution[J]. Corrosion Science, 1998, 40(11): 1845-1850. [百度学术] 

8

Umoren S A, Banera M J, Alonso-Garcia T, et al. Inhibition of mild steel corrosion in HCl solution using chitosan[J]. Cellulose, 2013, 20(5): 2529-2545. [百度学术] 

9

Maayta A K, Al-Rawashdeh N A F. Inhibition of acidic corrosion of pure aluminum by some organic compounds[J]. Corrosion Science, 2004, 46(5): 1129-1140. [百度学术] 

10

Martinez S, Stern I. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system[J]. Applied Surface Science, 2002, 199(1/2/3/4): 83-89. [百度学术] 

11

Brixi N K, Cherif R, Bezzar A, et al. Effectiveness of henna leaves extract and its derivatives as green corrosion inhibitors of reinforcement steel exposed to chlorides[J]. European Journal of Environmental and Civil Engineering, 2021: 1-19. [百度学术] 

12

Alibakhshi E, Ramezanzadeh M, Bahlakeh G, et al. Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics, Monte Carlo and quantum mechanics study[J]. Journal of Molecular Liquids, 2018, 255: 185-198. [百度学术] 

13

Hassan N, Ali S M, Ebrahim A, et al. Performance evaluation and optimization of camellia sinensis extract as green corrosion inhibitor for mild steel in acidic medium[J]. Materials Research Express, 2019, 6(8): 0865c7. [百度学术] 

14

Hernandes S I D, Cunha D J N, Santana C A, et al. Application of an aqueous extract of cotton seed as a corrosion inhibitor for mild steel in HCl media[J]. Materials Research, 2021, 24(1): 1-10. [百度学术] 

15

Martinez S, Štern I. Inhibitory mechanism of low-carbon steel corrosion by mimosa tannin in sulphuric acid solutions[J]. Journal of Applied Electrochemistry, 2001, 31(9): 973-978. [百度学术] 

16

Oguzie E E, Adindu C B, Enenebeaku C K, et al. Natural products for materials protection: mechanism of corrosion inhibition of mild steel by acid extracts of piper guineense[J]. The Journal of Physical Chemistry C, 2012, 116(25): 13603-13615. [百度学术] 

17

Khanra A, Srivastava M, Rai M P, et al. Application of unsaturated fatty acid molecules derived from microalgae toward mild steel corrosion inhibition in HCl solution: a novel approach for metal-inhibitor association[J]. ACS Omega, 2018, 3(10): 12369-12382. [百度学术] 

18

Li Y, Zhao P, Liang Q, et al. Berberine as a natural source inhibitor for mild steel in 1 M H2SO4[J]. Applied Surface Science, 2005, 252(5): 1245-1253. [百度学术] 

19

Iroha N B, Maduelosi N J. Corrosion inhibitive action and adsorption behaviour of justicia secunda leaves extract as an eco-friendly inhibitor for aluminium in acidic media[J]. Biointerface Research in Applied Chemistry, 2021, 11(5): 13019-13030. [百度学术] 

20

Bouyanzer A, Hammouti B. A study of anti-corrosive effects of Artemisia oil on steel[J]. Pigment & Resin Technology, 2004, 33(5): 287-292. [百度学术] 

21

Bouyanzer A, Hammouti B, Majidi L. Pennyroyal oil from Mentha pulegium as corrosion inhibitor for steel in 1 M HCl[J]. Materials Letters, 2006, 60(23): 2840-2843. [百度学术] 

22

Dehghani A, Bahlakeh G, Ramezanzadeh B. A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution[J]. Journal of Molecular Liquids, 2019, 282: 366-384. [百度学术] 

23

Odewunmi N A, Umoren S A, Gasem Z M. Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution[J]. Journal of Environmental Chemical Engineering, 2015, 3(1): 286-296. [百度学术] 

24

Kamal C, Sethuraman M G. Spirulina platensis - a novel green inhibitor for acid corrosion of mild steel[J]. Arabian Journal of Chemistry, 2012, 5(2): 155-161. [百度学术] 

25

Marzorati S, Verotta L, Trasatti S. Green corrosion inhibitors from natural sources and biomass wastes[J]. Molecules, 2018, 24(1): 48. [百度学术] 

26

Gerengi H, Sahin H I. Schinopsis lorentzii extract as a green corrosion inhibitor for low carbon steel in 1 M HCl solution[J]. Industrial & Engineering Chemistry Research, 2012, 51(2): 780-787. [百度学术] 

27

Muthukrishnan P, Prakash P, Ilayaraja M, et al. Effect of acidified feronia elephantum leaf extract on the corrosion behavior of mild steel[J]. Metallurgical and Materials Transactions B, 2015, 46(3): 1448-1460. [百度学术] 

28

Alvarez P E, Fiori-Bimbi M V, Neske A, et al. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution[J]. Journal of Industrial and Engineering Chemistry, 2018, 58: 92-99. [百度学术] 

29

Fouda A S, Abousalem A S, El-Ewady G Y. Mitigation of corrosion of carbon steel in acidic solutions using an aqueous extract of Tilia cordata as green corrosion inhibitor[J]. International Journal of Industrial Chemistry, 2017, 8(1): 61-73. [百度学术] 

30

Fouda A E A S, Shahba R M A, El-Shenawy A E, et al. Evaluation of cleome droserifolia (samwah) as green corrosion inhibitor for mild steel in 1 M HCl solution[J]. International Journal of Electrochemical Science, 2018: 7057-7075. [百度学术] 

31

Raja P B, Fadaeinasab M, Qureshi A K, et al. Evaluation of green corrosion inhibition by alkaloid extracts of ochrosia oppositifolia and isoreserpiline against mild steel in 1 M HCl medium[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10582-10593. [百度学术] 

32

Satapathy A K, Gunasekaran G, Sahoo S C, et al. Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution[J]. Corrosion Science, 2009, 51(12): 2848-2856. [百度学术] 

33

Prabakaran M, Kim S H, Hemapriya V, et al. Evaluation of polyphenol composition and anti-corrosion properties of Cryptostegia grandiflora plant extract on mild steel in acidic medium[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 47-56. [百度学术] 

34

Haldhar R, Prasad D, Bhardwaj N. Extraction and experimental studies of Citrus aurantifolia as an economical and green corrosion inhibitor for mild steel in acidic media[J]. Journal of Adhesion Science and Technology, 2019, 33(11): 1169-1183. [百度学术] 

35

Zuo X L, Li W P, Luo W, et al. Research of Lilium brownii leaves extract as a commendable and green inhibitor for X70 steel corrosion in hydrochloric acid[J]. Journal of Molecular Liquids, 2021, 321: 114914. [百度学术] 

36

Ali A E, Badr G E, Fouda A. Citrus sinensis extract as a green inhibitor for the corrosion of carbon steel in sulphuric acid solution[J]. Biointerface Research in Applied Chemistry, 2021, 11(6): 14007-14020. [百度学术] 

37

Dehghani A, Bahlakeh G, Ramezanzadeh B, et al. Aloysia citrodora leaves extract corrosion retardation effect on mild-steel in acidic solution: molecular/atomic scales and electrochemical explorations[J]. Journal of Molecular Liquids, 2020, 310: 113221. [百度学术] 

38

Umoren S A, Solomon M M, Obot I B, et al. A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 91-115. [百度学术] 

39

常春, 赵亚南, 曾爱国. 环糊精水提法提取积雪草中的三萜类化合物[J]. 西北药学杂志, 2018, 33(4): 432-435. [百度学术] 

Chang C, Zhao Y N, Zeng A G. Extraction of triterpenoids from centella asiatica by cyclodextrin aqueous extraction[J]. Northwest Pharmaceutical Journal, 2018, 33(4): 432-435. (in Chinese) [百度学术] 

40

叶荣棣. 一种葛根植物提取物的萃取工艺: CN111686149A[P]. 2020-09-22 [百度学术] 

Ye R D. Extraction technology of radix pueraiae plant extract: CN111686149A[P]. 2020-09-22. (in Chinese) [百度学术] 

41

韩高伟, 高子怡, 赵二劳. 苦参中生物碱的提取及纯化工艺研究进展[J]. 现代食品, 2018(15): 163-166. [百度学术] 

Han G W, Gao Z Y, Zhao E L. Research progress on extraction and purification technology of the Sophora flavescens alkaloid[J]. Modern Food, 2018(15): 163-166. (in Chinese) [百度学术] 

42

Ganzler K, Salgó A, Valkó K. Microwave extraction: a novel sample preparation method for chromatography[J]. Journal of Chromatography A, 1986, 371: 299-306. [百度学术] 

43

Alara O R, Abdurahman N H, Olalere O A. Ethanolic extraction of bioactive compounds from Vernonia amygdalina leaf using response surface methodology as an optimization tool[J]. Journal of Food Measurement and Characterization, 2018, 12(2): 1107-1122. [百度学术] 

44

Carreira-Casais A, Otero P, Garcia-Perez P, et al. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae[J]. International Journal of Environmental Research and Public Health, 2021, 18(17): 9153. [百度学术] 

45

杨开, 徐梦婷, 王玏萦, . 牛樟芝总三萜超声提取及体外活性研究[J]. 核农学报, 2018, 32(1): 112-122. [百度学术] 

Yang K, Xu M T, Wang L Y, et al. Ultrasonic-assisted extraction and in vitro activity evaluation of total triterpenoids from antrodia camphorata[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(1): 112-122. (in Chinese) [百度学术] 

46

陈祥云, 彭财英, 卢健, . 含小檗碱类中草药总生物碱的提取工艺及其药理研究进展[J]. 江西中医药, 2018, 49(9): 68-72. [百度学术] 

Chen X Y, Peng C Y, Lu J, et al. Research progress on extraction technology and pharmacology of total alkaloids from Chinese herbal medicine containing berberine [J]. Jiangxi Journal of Traditional Chinese Medicine, 2018, 49(9): 68-72. (in Chinese) [百度学术] 

47

杜萌, 李晓花. 秦艽多糖的提取工艺研究进展[J]. 中外企业家, 2019(11): 133. [百度学术] 

Du M, Li X H. Research progress on extraction technology of Polysaccharides from Gentiana officinalis [J]. Chinese & Foreign Entrepreneurs, 2019(11): 133. (in Chinese) [百度学术] 

48

张晶, 邢媛媛, 徐元庆, . 植物提取物活性成分的提取工艺及抑菌活性研究进展[J]. 动物营养学报, 2019, 31(12): 5461-5467. [百度学术] 

Zhang J, Xing Y Y, Xu Y Q, et al. Research progress on extraction technology and bacteriostatic activity of active ingredients in plant extracts[J]. Chinese Journal of Animal Nutrition, 2019, 31(12): 5461-5467. (in Chinese) [百度学术] 

49

胡伟, 李湘洲, 孟维, . 膜分离技术在植物有效成分分离与纯化中的应用进展[J]. 化学工程与装备, 2009(6): 95-97. [百度学术] 

Hu W, Li X Z, Meng W, et al. Application progress of membrane separation technology in the separation and purification of plant active ingredients [J]. Chemical Engineering & Equipment, 2009(6): 95-97. (in Chinese) [百度学术] 

50

Castro-Muñoz R, Díaz-Montes E, Cassano A, et al. Membrane separation processes for the extraction and purification of steviol glycosides: an overview[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(13): 2152-2174. [百度学术] 

51

王聪慧, 任娜, 魏微, . 天然产物分离纯化新技术[J]. 应用化工, 2019, 48(8): 1940-1943. [百度学术] 

Wang C H, Ren N, Wei W, et al. New technology for separation and purification of natural products[J]. Applied Chemical Industry, 2019, 48(8): 1940-1943. (in Chinese) [百度学术] 

52

Che Zain M S, Lee S Y, Teo C Y, et al. Adsorption/desorption characteristics and simultaneous enrichment of orientin, isoorientin, vitexin and isovitexin from hydrolyzed oil palm leaf extract using macroporous resins[J]. Processes, 2021, 9(4): 659. [百度学术] 

53

Alipour S, Azar P A, Husain S W, et al. Synthesis, characterization and application of spherical and uniform molecularly imprinted polymeric nanobeads as efficient sorbent for selective extraction of rosmarinic acid from plant matrix[J]. Journal of Materials Research and Technology, 2021, 12: 2298-2306. [百度学术] 

54

Lee D Y, Choi G H, Megson D, et al. Effect of soil organic matter on the plant uptake of perfluorooctanoic acid (PFOA) and perfluorooctanesulphonic acid (PFOS) in lettuce on granular activated carbon-applied soil[J]. Environmental Geochemistry and Health, 2021, 43(5): 2193-2202. [百度学术] 

55

Sun H, Lin Q, Wei W, et al. Ultrasound-assisted extraction of resveratrol from grape leaves and its purification on mesoporous carbon[J]. Food Science and Biotechnology, 2018, 27(5): 1353-1359. [百度学术] 

56

Jankowiak L, van Avermaete I, Boom R, et al. Adsorption of isoflavones onto PVPP in the presence of a soy matrix[J]. Separation and Purification Technology, 2015, 149: 479-487. [百度学术] 

57

Yang D, Fan R, Luo F, et al. Facile and green fabrication of efficient Au nanoparticles catalysts using plant extract via a mesoporous silica-assisted strategy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621: 126580. [百度学术] 

58

Di D L, Zheng Y Y, Chen X F, et al. Advances in application of high-speed countercurrent chromatography in separation and purification of flavonoids[J]. Chinese Journal of Analytical Chemistry, 2011, 39(2): 269-275. [百度学术] 

59

Jiang T, Ghosh R, ExtractionCharcosset C. Extraction, purification and applications of curcumin from plant materials-a comprehensive review[J]. Trends in Food Science & Technology, 2021, 112: 419-430. [百度学术] 

60

Liang N Y, Cai P F, Wu D T, et al. High-speed counter-current chromatography (HSCCC) purification of antifungal hydroxy unsaturated fatty acids from plant-seed oil and lactobacillus cultures[J]. Journal of Agricultural and Food Chemistry, 2017, 65(51): 11229-11236. [百度学术] 

61

Elabbasy H M, Fouda A S. Olive leaf as green corrosion inhibitor for C-steel in Sulfamic acid solution[J]. Green Chemistry Letters and Reviews, 2019, 12(3): 332-342. [百度学术] 

62

Dehghani A, Bahlakeh G, Ramezanzadeh B, et al. Potential role of a novel green eco-friendly inhibitor in corrosion inhibition of mild steel in HCl solution: detailed macro/micro-scale experimental and computational explorations[J]. Construction and Building Materials, 2020, 245: 118464. [百度学术] 

63

Shyamvarnan B, Shanmugapriya S, Selvi J A, et al. Corrosion inhibition effect of Elettaria cardamomum extract on mild steel in 3.5% NaCl medium[J]. Materials Today: Proceedings, 2021, 40: S192-S197. [百度学术] 

64

Solomon M M, Umoren S A, Udosoro I I, et al. Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution[J]. Corrosion Science, 2010, 52(4): 1317-1325. [百度学术] 

65

Dehghani A, Bahlakeh G, Ramezanzadeh B, et al. Potential role of a novel green eco-friendly inhibitor in corrosion inhibition of mild steel in HCl solution: detailed macro/micro-scale experimental and computational explorations[J]. Construction and Building Materials, 2020, 245: 118464. [百度学术] 

66

马志国, 李敏. 一种植物提取物复合阻垢缓蚀剂及其制备方法: CN109437416A[P]. 20190308. [百度学术] 

Ma Z G, Li M. Plant extract composite scale and corrosion inhibitor and preparation method thereof: CN109437416A[P]. 20190308. (in Chinese) [百度学术] 

67

Shyamvarnan B, Shanmugapriya S, Selvi J A, et al. Corrosion inhibition effect of Elettaria cardamomum extract on mild steel in 3.5% NaCl medium[J]. Materials Today: Proceedings, 2021, 40: S192-S197. [百度学术] 

68

Kaban A P S, Ridhova A, Priyotomo G, et al. Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution[J]. Eastern-European Journal of Enterprise Technologies, 2021, 2(6 (110)): 6-20. [百度学术] 

69

Haldhar R, Prasad D, Saxena A, et al. Experimental and theoretical studies of Ficus religiosa as green corrosion inhibitor for mild steel in 0.5 M H2SO4 solution[J]. Sustainable Chemistry and Pharmacy, 2018, 9: 95-105. [百度学术] 

70

马瑞, 郑红豆, 汪艳, . 水葫芦叶提取物对冷轧钢在H2SO4溶液中的缓蚀作用[J]. 清洗世界, 2018, 34(6): 22-27. [百度学术] 

Ma R, Zheng H D, Wang Y, et al. Inhibition effects of Eichhornia Crassipes leaves extracts on cold rolled steel in H2SO4 solution[J]. Cleaning World, 2018, 34(6): 22-27. (in Chinese) [百度学术] 

71

Hassannejad H, Nouri A. Sunflower seed hull extract as a novel green corrosion inhibitor for mild steel in HCl solution[J]. Journal of Molecular Liquids, 2018, 254: 377-382. [百度学术] 

72

Ramezanzadeh M, Bahlakeh G, Sanaei Z, et al. Corrosion inhibition of mild steel in 1 M HCl solution by ethanolic extract of eco-friendly Mangifera indica (mango) leaves: electrochemical, molecular dynamics, Monte Carlo and ab initio study[J]. Applied Surface Science, 2019, 463: 1058-1077. [百度学术] 

73

Bahlakeh G, Ramezanzadeh B, Dehghani A, et al. Novel cost-effective and high-performance green inhibitor based on aqueous Peganum harmala seed extract for mild steel corrosion in HCl solution: detailed experimental and electronic/atomic level computational explorations[J]. Journal of Molecular Liquids, 2019, 283: 174-195. [百度学术] 

74

Oguzie E E. Studies on the inhibitive effect of Occimum viridis extract on the acid corrosion of mild steel[J]. Materials Chemistry and Physics, 2006, 99(2/3): 441-446. [百度学术] 

75

Haldhar R, Prasad D, Nguyen L T D, et al. Corrosion inhibition, surface adsorption and computational studies of Swertia chirata extract: a sustainable and green approach[J]. Materials Chemistry and Physics, 2021, 267: 124613. [百度学术] 

76

Ahmed R K, Zhang S T. Atriplex leucoclada extract: a promising eco-friendly anticorrosive agent for copper in aqueous media[J]. Journal of Industrial and Engineering Chemistry, 2021, 99: 334-343. [百度学术] 

77

He J H, Xu Q, Li G Q, et al. Insight into the corrosion inhibition property of Artocarpus heterophyllus Lam leaves extract[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 260-270. [百度学术] 

78

Mobtaker H, Azadi M, Hassani N, et al. The inhibition performance of quinoa seed on corrosion behavior of carbon steel in the HCl solution; theoretical and experimental evaluations[J]. Journal of Molecular Liquids, 2021, 335: 116183. [百度学术] 

79

强玉杰. 新型含氮类有机分子缓蚀行为的电化学与分子模拟研究[D]. 重庆: 重庆大学, 2019. [百度学术] 

Qiang Y J. Electrochemical and molecular simulation study on corrosion inhibition behavior of novel nitrogen-containing organic molecules[D]. Chongqing: Chongqing University, 2019. (in Chinese) [百度学术] 

80

Zhou Y, Zhu C, Xu S Y, et al. Combining electrochemical, surface topography analysis, and theoretical calculation methods to insight into the anti-corrosion property of Syzygium samarangense leaf extract[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 302-311. [百度学术] 

81

Radi M, Melian R, Galai M, et al. Pumpkin seeds as an eco-friendly corrosion inhibitor for 7075-T6 alloy in 3.5% NaCl solution: electrochemical, surface and computational studies[J]. Journal of Molecular Liquids, 2021, 337: 116547. [百度学术] 

82

Wang D Y, Nie B L, Li H J, et al. Anticorrosion performance of grape seed proanthocyanidins extract and Tween-80 for mild steel in hydrochloric acid medium[J]. Journal of Molecular Liquids, 2021, 331: 115799. [百度学术] 

83

Xu S Y, Qiang Y J, Fu A Q, et al. Luffa cylindrica roem leaves extract as the environment-friendly inhibitor for copper in sulfuric acid environment[J]. Journal of Molecular Liquids, 2021, 343: 117619. [百度学术] 

84

Kardas G, Solmaz R. Electrochemical investigation of barbiturates as green corrosion inhibitors for mild steel protection[J]. Corrosion Reviews, 2006, 24(3/4): 151-172. [百度学术] 

85

Chakravarthy M P, Mohana K N, Pradeep Kumar C B. Corrosion inhibition effect and adsorption behaviour of nicotinamide derivatives on mild steel in hydrochloric acid solution[J]. International Journal of Industrial Chemistry, 2014, 5(2): 1-21. [百度学术] 

86

Li X H, Deng S D, Fu H, et al. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of steel in H2SO4 solution: weight loss, electrochemical, UV-vis, FTIR, XPS, and AFM approaches[J]. Applied Surface Science, 2008, 254(17): 5574-5586. [百度学术] 

87

Telegdi J, Shaglouf M M, Shaban A, et al. Influence of cations on the corrosion inhibition efficiency of aminophosphonic acid[J]. Electrochimica Acta, 2001, 46(24/25): 3791-3799. [百度学术] 

88

Larabi L, Harek Y, Traisnel M, et al. Synergistic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1M HCl[J]. Journal of Applied Electrochemistry, 2004, 34(8): 833-839. [百度学术] 

89

Jokar M, Farahani T S, Ramezanzadeh B. Electrochemical and surface characterizations of morus alba pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1 M HCl[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63: 436-452. [百度学术] 

90

Umoren S A, Solomon M M, Eduok U M, et al. Inhibition of mild steel corrosion in H2SO4 solution by coconut coir dust extract obtained from different solvent systems and synergistic effect of iodide ions: ethanol and acetone extracts[J]. Journal of Environmental Chemical Engineering, 2014, 2(2): 1048-1060. [百度学术] 

91

Obi-Egbedi N O, Obot I B, Umoren S A. Spondias mombin L. as a green corrosion inhibitor for aluminium in sulphuric acid: correlation between inhibitive effect and electronic properties of extracts major constituents using density functional theory[J]. Arabian Journal of Chemistry, 2012, 5(3): 361-373. [百度学术] 

92

Li X H, Deng S D, Fu H, et al. Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4 solution[J]. Corrosion Science, 2014, 78: 29-42. [百度学术] 

93

Eduok U M, Umoren S A, Udoh A P. Synergistic inhibition effects between leaves and stem extracts of Sida acuta and iodide ion for mild steel corrosion in 1 M H2SO4 solutions[J]. Arabian Journal of Chemistry, 2012, 5(3): 325-337. [百度学术] 

94

Heragh M F, Tavakoli H. Synergetic effect of the combination of Prosopis Farcta extract with sodium dodecyl sulfate on corrosion inhibition of St37 steel in 1M HCl medium[J]. Journal of Molecular Structure, 2021, 1245: 131086. [百度学术] 

95

Ituen E, Lin Y H, Verma C, et al. Synthesis and characterization of walnut husk extract-silver nanocomposites for removal of heavy metals from petroleum wastewater and its consequences on pipework steel corrosion[J]. Journal of Molecular Liquids, 2021, 335: 116132. [百度学术] 

96

El-Tantawy M I, Gadow H S, Rashed I G, et al.. Inhibition of copper corrosion by rice straw extract in 2M solution of nitric acid[J]. Biointerface Research in Applied Chemistry, 2021, 12(1): 83-104. [百度学术] 

97

Boumezzourh A, Ouknin M, Chibane E, et al. Crocus sativus L. flower aqueous extract as corrosion inhibitor of tinplate (cans material) in 0.5M H2C2O4 medium[J]. Biointerface Research in Applied Chemistry, 2021, 12(2): 1749-1761. [百度学术] 

98

Shi S H. Electrochemical corrosion resistance of carbon steel rebar in concrete structures exposed to 3.5wt% NaCl solution: effect of green inhibitors and micro-silica as partial replacement[J]. International Journal of Electrochemical Science, 2021: ArticleID: 210527. [百度学术] 

99

Vorobyova V, Skiba M. Peach pomace extract as novel cost-effective and high-performance green inhibitor for mild steel corrosion in NaCl solution: experimental and theoretical research[J]. Waste and Biomass Valorization, 2021, 12(8): 4623-4641. [百度学术] 

100

Al Hasan N H J, Alaradi H J, Al Mansor Z A K, et al. The dual effect of stem extract of Brahmi(Bacopamonnieri) and Henna as a green corrosion inhibitor for low carbon steel in 0.5 M NaOH solution[J]. Case Studies in Construction Materials, 2019, 11: e00300. [百度学术] 

101

Al-Moubaraki A H, Al-Howiti A A, Al-Dailami M M, et al. Role of aqueous extract of celery (Apium graveolens L.) seeds against the corrosion of aluminium/sodium hydroxide systems[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4194-4205. [百度学术] 

102

Chaubey N, Yadav D K, Singh V K, et al. A comparative study of leaves extracts for corrosion inhibition effect on aluminium alloy in alkaline medium[J]. Ain Shams Engineering Journal, 2017, 8(4): 673-682. [百度学术] 

103

Chaubey N, Singh V K, Quraishi M A. Electrochemical approach of Kalmegh leaf extract on the corrosion behavior of aluminium alloy in alkaline solution[J]. International Journal of Industrial Chemistry, 2017, 8(1): 75-82. [百度学术] 

104

Halambek J, Cindrić I, Ninčević Grassino A. Evaluation of pectin isolated from tomato peel waste as natural tin corrosion inhibitor in sodium chloride/acetic acid solution[J]. Carbohydrate Polymers, 2020, 234: 115940. [百度学术]