摘要
颗粒污泥的三维结构极大地影响其沉降性能和结构稳定性,但是目前缺乏对颗粒污泥内部三维结构、孔隙结构分布特征等在维持颗粒结构稳定性中的作用的研究。以厌氧氨氧化颗粒污泥为对象,采用同步辐射的X射线显微断层扫描成像技术扫描颗粒,通过Avizo软件对颗粒污泥进行三维重构,获得了颗粒污泥中孔径、孔隙的空间分布和分形维数,建立了颗粒污泥的孔隙网络模型,并计算颗粒污泥的绝对渗透率,为颗粒污泥系统在污水处理中的稳定高效应用提供理论依据。
颗粒污泥由于其结构紧凑、生物截留率高、沉降性能良好和抗冲击能力强等优点而备受环境工程界青睐。但颗粒污泥在运行过程中容易出现颗粒解体、污泥上浮等问题,极大程度上影响了工艺的稳定运行。颗粒解体、污泥上浮与颗粒污泥的内部结构与特性密不可分。Li
关于多孔结构的观测与表征,目前主要的方法是核磁共振成像,荧光原位杂交结合激光共聚焦和扫描电子显微镜等方
采用膨胀颗粒污泥床(EGSB)反应器实现厌氧氨氧化工艺。反应器由有机玻璃制成,高1 800 mm,内径90 mm,总有效容积17.59 L,其中反应区容积11.45 L,沉淀区容积6.14 L。反应器外设置厚度为100 mm的环形水浴保温层,反应器温度保持在(32±1)
废水组成 | 质量浓度/(g∙ | 微量元素 | 质量浓度/(mg∙ |
---|---|---|---|
NH4Cl | 200 | EDTA-2Na | 14.1 |
NaNO2 | 240 | H3BO4 | 0.014 |
KHCO3 | 2.13 | MnCl2•4H2O | 0.99 |
MgSO4∙7H2O | 0.2 | CuSO4•5H2O | 0.25 |
KH2PO4 | 0.025 | ZnSO4•7H2O | 0.43 |
CaCl2 | 0.2 | NiCl2•6H2O | 0.19 |
EDTA-2Na | 0.005 | NaMoO4•2H2O | 0.22 |
FeSO4∙7H2O | 0.005 | CoCl2•6H2O | 0.24 |
厌氧氨氧化颗粒污泥从实验室规模的EGSB反应器中取样,共使用8个颗粒污泥进行表征、分析和计算,颗粒粒径大小为3.5~4.0 mm。将颗粒污泥置于含有2.5%戊二醛和2%甲醛的氯化钙缓冲溶液中4 h,然后,将颗粒污泥置于无水丙酮中以替换其结合水,并在包埋过程中加入着色
本研究中X射线CT扫描于上海同步辐射光源的BL15W1线站中完成。与X射线管中产生的X射线(例如工业和医疗应用中)相比,基于同步加速器的X射线是单色光,具有更高的亮度,可以避免射线硬化伪影,从而显著提高重建图像的质量。光学变换系统 (Optique Peter PCO2000) 提供多物镜切换功能,放大倍数为原始尺寸的 1.25 至 20 倍。电荷耦合器件(CCD)探测器(Hamamatsu ORCA-Flash4.0)视野大小为6.8 mm×7.2 mm,对应为1 360像素×1 430像素,即每个方向上1像素代表5 μm。
CT扫描后所得投影图像是相位衬度经过拉普拉斯变换后的分布,即边缘衬度图像。采用同轴相衬方法从边缘衬度图像中恢复相位衬度,从而得到片层图像。采用PITRE软件中的GRIDREC算法对得到的相位衬度图像进行重构,其与传统的FBP算法相比,能在不降低重构图像质量的前提下大幅度降低重构图像所需的时
颗粒污泥的三维重建如

图 1 颗粒污泥的三维重建
Fig. 1 3D reconstruction of guanular sludge
二维CT片层灰度图像中存在系统噪声,因此需要通过滤波算法提高信噪比。针对三维图像,比较常用的滤波算法有低通线性滤波、高斯平滑滤波及中值滤波,通过综合对比3种算法的滤波效果,采用中值滤波对灰度图像进行滤波处理,去除了部分伪影,孔隙和颗粒污泥骨架之间的过渡变得自然,边界也变得平滑,同时也尽可能地保留了图像重要特征信息(见

图 2 中值滤波
Fig. 2 Median filter
为划分出颗粒污泥骨架和孔隙,还需要对滤波后的灰度图像进行二值化分割,使其由灰度图像转变为二值化图像。图像二值化的关键在于分割阈值的选取,如
从灰度图和二值图中可以发现颗粒污泥结构中存在大量孔隙,这些孔隙被认为是微生物菌群在外部选择压的强化下,适应环境的结果,它们为基质和代谢产物的传递提供必要的内部通道。研究表明,颗粒污泥的孔隙率一般在0.58到0.92之间,小于传统絮状活性污泥的孔隙率(大于0.95

图3 颗粒污泥孔隙直径及体积比
Fig. 3 Pore diameter and volume ratio of granular sludge
选取8个粒径相近的颗粒,从晶核(约250 μm处)向外,根据距颗粒中心的距离,每125 μm划分为1个区间,共计13个区间。根据孔隙的空间坐标,将区间内的孔隙体积除以区间体积,得到颗粒内每个区间内的孔隙度并进行拟合,从而得到
。 | (1) |

图4 区间孔隙度
Fig. 4 Interval porosity
与经典的欧几里德几何不同,分形几何认为物体的维数可以是一个非整数值。分形维数可以用来描述对象的空间填充能力。Anammox细菌从细胞聚集成团、形成亚单位,与胞外聚合物(extracellular polymeric substances, EPS)和无机物质相互粘结,最终形成颗粒污

图5 颗粒污泥的几何分布
Fig. 5 Geometric distribution of granular sludge
将分形维数与颗粒污泥的孔隙度进行相关性分析,从
, | (2) |
式中:τave为平均迂曲度,是反映通道迂回曲折程度的参数,由Avizo软件对图像处理得到;Ls为孔隙的平均宏观长度,mm;λave为孔隙的算数平均孔径,mm。计算结果与孔隙度的关系如
由此可得,灰度图像的分形维数是孔隙多少和分布情况共同作用的结果,所以其与孔隙度并不一定保持线性递增的关
使用Avizo软件中的Axis Connectivity模块对二值化后的图像进行连通性分析,并将二值化图和连通性孔隙图做差量化运算,得到颗粒污泥中独立的孔隙分布。从

图6 独立孔隙三维结构
Fig. 6 Independent pore structure
为了更加简明直观地展示连通孔隙空间的结构,采用Avizo细化算法获取孔隙空间,建立了能够简化表征孔隙空间结构的等价孔隙网络模型(

图7 颗粒污泥孔隙的连通性
Fig. 7 Pore connectivity of granular sludge
颗粒污泥的渗透性代表了流体通过的能力,直接决定了其传质模式和传质效
, | (3) |
式中:u为流体速度;为流体压力,Pa;为流体密度即998.2 kg/

图8 颗粒污泥渗流流线图
Fig. 8 Percolation streamline
在计算结果中,由出口或入口边界上对流动速度进行积分,可以得到通过颗粒的体积流量,再代入达西定律公式中即可求得绝对渗透
, | (4) |
式中:为流量,
根据得到的平均渗透率和2.4.1中得到的独立孔隙体积,得到

图9 颗粒污泥渗透率和独立孔隙占比
Fig. 9 Permeability and independent pore of granular sludge
根据Kozeny-Carman方程,多孔介质的渗透性应与其孔隙度呈正相关。
, | (5) |
式中:为Kozeny-Carman常数;为孔隙度;为固体相的比表面积。而本研究中所选取颗粒污泥的渗透性与孔隙度的相关性不显著(p=0.756)。根据Kozeny-Carman方程,颗粒污泥的渗透性不仅与孔隙度相关,也与孔喉比相关,且孔喉比的影响程度更
在Anammox颗粒污泥中,蛋白质和-多糖构成了颗粒污泥的主干,而活细菌和-多糖则主要分布在外
颗粒污泥的分形特性和多孔结构使其具有良好的渗透性,可以降低颗粒污泥受到的阻
颗粒污泥内部孔隙的连通性与其水力渗透性和产气过程密切相关。Xue
Fukumoto
1)建立了X射线CT扫描颗粒污泥片层图像的三维重构方法,并发现了中间密集内外层稀疏的颗粒孔隙空间分布特征,为解读污泥上浮过程和颗粒污泥结构稳定性提供思路。
2)得到了颗粒污泥内部孔隙的分形维数及弯曲分形维数,发现了弯曲分形维数与颗粒孔隙度的负相关关系,并发现灰度图像的分形维数受颗粒的孔隙度及迂曲度共同影响。
3)利用Avizo软件对颗粒污泥的连通性进行分析,将独立孔隙体积与全部孔隙体积之比作为指标评估颗粒污泥孔隙的连通性,并建立了颗粒污泥孔隙网络模型,得出颗粒污泥内部等效孔径与其配位喉道数呈正相关。
4)对去除独立孔隙后的颗粒污泥进行绝对渗透率计算,颗粒污泥渗透率分布在200~400 μ
参考文献
Li W, Zheng P, Ji J Y, et al. Floatation of granular sludge and its mechanism: a key approach for high-rate denitrifying reactor[J]. Bioresource Technology, 2014, 152: 414-419. [百度学术]
Tao J S, Xing J L, Wang D P, et al. Deciphering the genesis of anammox granular sludge floating from the perspective of microbial community[J]. Journal of Water Process Engineering, 2020, 36: 101265. [百度学术]
Rao B Q, Pang H R, Fan F B, et al. Pore-scale model and dewatering performance of municipal sludge by ultrahigh pressurized electro-dewatering with constant voltage gradient[J]. Water Research, 2021, 189: 116611. [百度学术]
Rao B Q, Su X Y, Qiu S X, et al. Meso-mechanism of mechanical dewatering of municipal sludge based on low-field nuclear magnetic resonance[J]. Water Research, 2019, 162: 161-169. [百度学术]
Qiu S X, Yang M, Xu P, et al. A new fractal model for porous media based on low-field nuclear magnetic resonance[J]. Journal of Hydrology, 2020, 586: 124890. [百度学术]
Li X J, Sung S. Development of the combined nitritation-anammox process in an upflow anaerobic sludge blanket (UASB) reactor with anammox granules[J]. Chemical Engineering Journal, 2015, 281: 837-843. [百度学术]
Wang J, Zhang Z J, Zhang Z F, et al. Production and application of anaerobic granular sludge produced by landfill[J]. Journal of Environmental Sciences, 2007, 19(12): 1454-1460. [百度学术]
Shen J F, Zhang Y, Ling C, et al. Comparative study on the fractal dimensions of soil particle size[J]. IOP Conference Series: Earth and Environmental Science, 2019, 267(2): 022039. [百度学术]
Xu Y, Lu Y Q, Zheng L K, et al. Effects of humic matter on the anaerobic digestion of sewage sludge: new insights from sludge structure[J]. Chemosphere, 2020, 243: 125421. [百度学术]
Tijani H I, Abdullah N, Yuzir A, et al. Rheological and fractal hydrodynamics of aerobic granules[J]. Bioresource Technology, 2015, 186: 276-285. [百度学术]
van der Star W R L, Abma W R, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149-4163. [百度学术]
Wheatland J A T, Bushby A J, Spencer K L. Quantifying the structure and composition of flocculated suspended particulate matter using focused ion beam nanotomography[J]. Environmental Science & Technology, 2017, 51(16): 8917-8925. [百度学术]
Marone F, Stampanoni M. Regridding reconstruction algorithm for real-time tomographic imaging[J]. Journal of Synchrotron Radiation, 2012, 19(Pt 6): 1029-1037. [百度学术]
Phatak C, Gürsoy D. Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography[J]. Ultramicroscopy, 2015, 150: 54-64. [百度学术]
Pelt D M, de Andrade V. Improved tomographic reconstruction of large-scale real-world data by filter optimization[J]. Advanced Structural and Chemical Imaging, 2017, 2(1): 17. [百度学术]
Wang H P, Yang Y S, Wang Y D, et al. Data-constrained modelling of an anthracite coal physical structure with multi-spectrum synchrotron X-ray CT[J]. Fuel, 2013, 106: 219-225. [百度学术]
龙建武, 申铉京, 陈海鹏. 自适应最小误差阈值分割算法[J]. 自动化学报, 2012, 38(7): 1134-1144. [百度学术]
Long J W, Shen X J, Chen H P. Adaptive minimum error thresholding algorithm[J]. Acta Automatica Sinica, 2012, 38(7): 1134-1144.(in Chinese) [百度学术]
Xu D D, Fan J H, Li W J, et al. Deciphering correlation between permeability and size of anammox granule: “pores as medium”[J]. Water Research, 2021, 191: 116832. [百度学术]
刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报, 2014, 57(4): 1133-1140. [百度学术]
Liu X J, Zhu H L, Liang L X. Digital rock physics of sandstone based on micro-CT technology[J]. Chinese Journal of Geophysics, 2014, 57(4): 1133-1140.(in Chinese) [百度学术]
Liu L, de Kock T, Wilkinson J, et al. Methane bubble growth and migration in aquatic sediments observed by X-ray μCT[J]. Environmental Science & Technology, 2018, 52(4): 2007-2015. [百度学术]
Ni S Q, Sun N, Yang H L, et al. Distribution of extracellular polymeric substances in anammox granules and their important roles during anammox granulation[J]. Biochemical Engineering Journal, 2015, 101: 126-133. [百度学术]
Liu W L, Wu Y, Zhang S J, et al. Successful granulation and microbial differentiation of activated sludge in anaerobic/anoxic/aerobic (
Shi Z J, Guo Q, Xu Y Q, et al. Mass transfer characteristics, rheological behavior and fractal dimension of anammox granules: the roles of upflow velocity and temperature[J]. Bioresource Technology, 2017, 244: 117-124. [百度学术]
Mu Y, Yu H Q. Rheological and fractal characteristics of granular sludge in an upflow anaerobic reactor[J]. Water Research, 2006, 40(19): 3596-3602. [百度学术]
Xu P, Chen Z Y, Qiu S X, et al. An analytical model for pore and tortuosity fractal dimensions of porous media[J]. Fractals, 2021, 29(6): 2150156. [百度学术]
Yu B M. Fractal character for tortuous streamtubes in porous media[J]. Chinese Physics Letters, 2005, 22(1): 158-160. [百度学术]
宣科佳. 颗粒污泥和絮状污泥物理性质与分形特征研究[D]. 北京: 北京林业大学, 2009. [百度学术]
Xuan K J. Study on physical and fractal structure charateristics of floc sludge and granular sludge[D]. Beijing: Beijing Forestry University, 2009. (in Chinese) [百度学术]
王合明. 多孔介质孔隙结构的分形特征和网络模型研究[D]. 大连: 大连理工大学, 2013. [百度学术]
Wang H M. The study on fractal characteristics and net-work model of pore-structure of porous media[D]. Dalian: Dalian University of Technology, 2013. (in Chinese) [百度学术]
Othman M R, Helwani Z, Martunus. Simulated fractal permeability for porous membranes[J]. Applied Mathematical Modelling, 2010, 34(9): 2452-2464. [百度学术]
Xu P, Zhang L P, Rao B Q, et al. A fractal scaling law between tortuosity and porosity in porous media[J]. Fractals, 2020, 28(2): 2050025. [百度学术]
Zhang J, Pan J Q, Zhao S S, et al. Calcium migration inside anaerobic granular sludge: evidence from calcium carbonate precipitation pattern[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126890. [百度学术]
Zheng X Y, Wang X N, Huang X, et al. Effects of C
Mu Y, Yu H Q, Wang G. Permeabilities of anaerobic CH4-producing granules[J]. Water Research, 2006, 40(9): 1811-1815. [百度学术]
Yu X L, Peng G Y, Lu S G. Characterizing aggregate pore structure by X-ray micro-computed tomography and a network model[J]. Soil Science Society of America Journal, 2018, 82(4): 744-756. [百度学术]
Xu D D, Kangda, Yu T, et al. A secret of high-rate mass transfer in anammox granular sludge: “lung-like breathing”[J]. Water Research, 2019, 154: 189-198. [百度学术]
周律, 李哿, SHIN Hangsik, 等. 污水生物处理中生物膜传质特性的研究进展[J]. 环境科学学报, 2011, 31(8): 1580-1586. [百度学术]
Zhou L, Li G, Shin H, et al. Research progresson mass transfer in biofilms for wastewater treatment[J]. Acta Scientiae Circumstantiae, 2011, 31(8): 1580-1586.(in Chinese) [百度学术]
Noiriel C, Steefel C I, Yang L, et al. Effects of pore-scale precipitation on permeability and flow[J]. Advances in Water Resources, 2016, 95: 125-137. [百度学术]
Li K W, Horne R N. Numerical simulation without using experimental data of relative permeability[J]. Journal of Petroleum Science and Engineering, 2008, 61(2/3/4): 67-74. [百度学术]
Koponen A, Kataja M, Timonen J, et al. Simulations of single-fluid flow in porous media[J]. International Journal of Modern Physics C, 1998, 9(8): 1505-1521. [百度学术]
van den Berg L, Kirkland C M, Seymour J D, et al. Heterogeneous diffusion in aerobic granular sludge[J]. Biotechnology and Bioengineering, 2020, 117(12): 3809-3819. [百度学术]
Li W W, Yu H Q. Physicochemical characteristics of anaerobic H2-producing granular sludge[J]. Bioresource Technology, 2011, 102(18): 8653-8660. [百度学术]
李传亮. 孔喉比对地层渗透率的影响[J]. 油气地质与采收率, 2007, 14(5): 78-79, 87, 116. [百度学术]
Li C L. Effect of pore-throat ratio on reservoir permeability[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(5): 78-79, 87, 116.(in Chinese) [百度学术]
Lafhaj Z, Goueygou M, Djerbi A, et al. Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content[J]. Cement and Concrete Research, 2006, 36(4): 625-633. [百度学术]
Shin C H. Permeability variation analysis using the superficial diameter correlation with porosity change[J]. Physics of Fluids, 2021, 33(5): 053108. [百度学术]
Gamage K, Screaton E, Bekins B, et al. Permeability-porosity relationships of subduction zone sediments[J]. Marine Geology, 2011, 279(1/2/3/4): 19-36. [百度学术]
Niya S M R, Selvadurai A P S. A statistical correlation between permeability, porosity, tortuosity and conductance[J]. Transport in Porous Media, 2018, 121(3): 741-752. [百度学术]
Jiang J K, Wu J, Zhang Z L, et al. Crater formation on anaerobic granular sludge[J]. Chemical Engineering Journal, 2016, 300: 423-428. [百度学术]
Liu L, Sheng G P, Li W W, et al. Experimental and numerical analysis of the hydrodynamic behaviors of aerobic granules[J]. AIChE Journal, 2011, 57(10): 2909-2916. [百度学术]
Li W, Zheng P, Wang L, et al. Physical characteristics and formation mechanism of denitrifying granular sludge in high-load reactor[J]. Bioresource Technology, 2013, 142: 683-687. [百度学术]
Wang Z Y, Zheng P. Predicting settling performance of ANAMMOX granular sludge based on fractal dimensions[J]. Water Research, 2017, 120: 222-228. [百度学术]
Yu B M, Liu W. Fractal analysis of permeabilities for porous media[J]. AIChE Journal, 2004, 50(1): 46-57. [百度学术]
Liu G N, Liu J S, Liu L, et al. A fractal approach to fully-couple coal deformation and gas flow[J]. Fuel, 2019, 240: 219-236. [百度学术]
Xue H, Wang W G, Xie H C, et al. Deciphering the floatation reversibility of anammox sludge: a balance between sludge rheological intensity and external hydraulic shearing[J]. Science of the Total Environment, 2022, 806: 151325. [百度学术]
Tsui T H, Ekama G A, Chen G H. Quantitative characterization and analysis of granule transformations: role of intermittent gas sparging in a super high-rate anaerobic system[J]. Water Research, 2018, 139: 177-186. [百度学术]
Yu T, Tian L L, You X C, et al. Deactivation mechanism of calcified anaerobic granule: space occupation and pore blockage[J]. Water Research, 2019, 166: 115062. [百度学术]
Fukumoto Y, Ohtsuka S. 3-D direct numerical model for failure of non-cohesive granular soils with upward seepage flow[J]. Computational Particle Mechanics, 2018, 5(4): 443-454. [百度学术]
Wang K, Tan W, Zhu Y K, et al. Liquid seepage in coal granular-type porous medium[J]. ACS Omega, 2020, 5(32): 20321-20334. [百度学术]