摘要
为探究富营养化水体中藻类的新型治理技术,通过水热法和高温煅烧法,使颗粒活性炭(AC)表层上负载铜铁双金属氧化物Cu-FeOx,制得可回收的Cu-FeOx@AC复合催化剂。以XRD、SEM、FTIR和XPS对Cu-FeOx@AC的表征为基础,研究Cu-FeOx占AC的负载比、过一硫酸盐(PMS)使用量、初始pH及不同反应体系对除藻的影响,探究Cu-FeOx@AC活化过一硫酸盐体系的除藻效能。Cu-FeOx@AC活化过一硫酸盐体系反应机理,通过自由基淬灭实验、XPS表征进行探究。结果可知,初始pH为6,初始藻细胞密度为1.4×1
水体富营养化易引发藻类爆发,威胁水环境质量和水生生物生
当前,单过渡金属活化PMS是过渡金属活化PMS的主要手段,钴离
本研究采用水热法和高温烧结法制备复合催化剂Cu-FeOx@AC,并探究Cu-FeOx@AC活化PMS体系的除藻效能与机制。使用扫描电镜等表征手段,对材料的形貌、结构等进行探究;研究了不同条件下,Cu-FeOx@AC活化PMS体系的除藻率,并证明了双金属氧化物Cu-FeOx负载在活性炭上,催化性能更佳,为应对藻类爆发提供了新方法。
称取2.416 g Cu(NO3)2·3H2O和8.080 g Fe(NO3)3·9H2O置于100 mL烧杯中,加入30 mL超纯水,室温下搅拌至完全溶解,然后加入16.000 g NaOH和40 mL超纯水溶解,冷却后,添加不同质量AC颗粒(20~50目)搅拌3 h,见
材料 | 投加量/g | ||
---|---|---|---|
Fe(NO3)3·9H2O | Cu(NO3)2·3H2O | AC | |
Cu-FeOx | 8.08 | 2.416 | 0 |
Cu-FeOx@1AC | 8.08 | 2.416 | 0.2 |
Cu-FeOx@2AC | 8.08 | 2.416 | 0.4 |
Cu-FeOx@3AC | 8.08 | 2.416 | 0.6 |
Cu-FeOx@4AC | 8.08 | 2.416 | 0.8 |
材料的成分通过X射线衍射仪(XRD,PANalytical X’Pert PRO)分析。采用扫描电镜SEM(ZWISS Gemini 300,德国卡尔蔡司公司)观察材料形貌特征,材料表面微区的元素组成通过EDS能谱仪(OXFORD Xplore,英国牛津仪器公司)分析。铁、铜相对含量通过ICP(美国赛默飞公司 iCAP PRO)测定。复合材料化学键的类别,使用FTIR(Thermo Scientific Nicolet iS20)在4 000~400 c
以铜绿微囊藻为研究对象,用0.5 mol/L的NaOH和0.5 mol/L的HCl调节pH至6,初始藻细胞密度为每升1.4×1
在自由基淬灭实验中,自由基贡献率可采取×100%来计
Cu-FeOx和Cu-FeOx@AC复合材料的XRD图谱,如

图1 Cu-FeOx和Cu-FeOx@AC复合材料的XRD图
Fig. 1 XRD results of Cu-FeOx and Cu-FeOx@AC
采用SEM对AC单体、Cu-FeOx和Cu-FeOx@AC复合材料表面形貌进行观察。通过图2(a)(b)观察到,活性炭表面粗糙不平,具有发达的孔隙结构,为Cu-FeOx在活性炭表面的负载提供了可能。从图2(c)(d)看出,Cu-FeOx单体由有棱边的盘状颗粒构成,每个盘状颗粒都由2部分构成,具有多边形片状体,并负载着无序聚集的矩形小颗粒,有一定的团聚现象。从图2(e)(f)看出,Cu-FeOx负载到活性炭上之后,材料的团聚现象明显减少。使用EDS分析Cu-FeOx@AC复合材料表面微区的元素种类及含量,如

图2 扫描电镜图
Fig. 2 SEM images

图3 Cu-FeOx@AC复合材料的EDS图
Fig. 3 Energy dispersive spectrum of Cu-FeOx@AC
从造成。活性炭表面的羧基有具有拉伸作用的
,使得图谱在1 450 c

图4 Cu-FeOx和Cu-FeOx@AC复合材料的FTIR表征图
Fig. 4 FTIR spectra of Cu-FeOx and Cu-FeOx@AC
选取相同质量不同负载比的复合材料Cu-FeOx@1~4AC进行除藻实验,如

图5 Cu-FeOx与AC负载比对除藻效能的影响
Fig. 5 Efficacy of Cu-FeOx and AC load ratios on algae removal
材料 | 所测元素 | 元素含量Cx/(mg· | 元素所占比例/% |
---|---|---|---|
Cu-FeOx@1AC | Fe | 547.42 | 54.742 |
Cu | 318.18 | 31.818 | |
Cu-FeOx@2AC | Fe | 568.40 | 56.840 |
Cu | 338.33 | 33.833 | |
Cu-FeOx@3AC | Fe | 557.72 | 55.772 |
Cu | 323.48 | 32.348 | |
Cu-FeOx@4AC | Fe | 498.80 | 49.880 |
Cu | 281.33 | 28.133 |
反应体系初始PMS质量浓度,会影响除藻
(1) |
(2) |

图6 不同初始PMS质量浓度对除藻效能的影响
Fig. 6 Efficacy of different initial PMS concentrations on
传统芬顿系统中,溶液pH值是影响反应的重要参数之

图7 不同初始pH值对除藻效能的影响
Fig. 7 Efficacy of different initial pH values on
因此,相比于传统芬顿系统,Cu-FeOx@AC活化PMS体系具有广泛的pH适用范围,更加适合于处理含藻量高,pH偏碱性的水体。
在不存在PMS的条件下,采用AC、CuO与Fe2O3单体,Cu-FeOx和复合材料Cu-FeOx@2AC除藻,效果见

图8 不同催化剂对藻的吸附能力
Fig. 8 Adsorption capacity of different catalysts for algae
在存在PMS时,不同体系活化PMS除藻的效果比较,如

图9 不同体系的除藻能力
Fig. 9 Different systems’ algae removal capacity
取OD680=0.14的藻液(初始藻细胞密度为每升1.4×1
如

图10 复合催化剂的重复使用性研究
Fig. 10 Reusability of composite catalyst
传统过渡金属活化PMS的反应机理,主要有基于、的自由基氧化反应理论,和基于空穴(
如
(3) |
(4) |
(5) |
(6) |
(7) |

图11 屏蔽剂对Cu-FeOx@AC/PMS体系除藻率的影响
Fig. 11 Effects of shielding agent on algae removal rate of Cu-FeOx@AC/PMS system
由
淬灭剂质量浓度/(m | 除藻率/% | ||||||
---|---|---|---|---|---|---|---|
不添加淬灭剂 | 甲醇 | 叔丁醇 | 对苯醌 | 糠醇 | EDTA-2Na | ||
0.4 | 97.25 | 64.64 | 91.47 | — | 80.50 | — | |
0.8 | 97.25 | 53.38 | 59.38 | — | 59.41 | — | |
2 | 97.25 | — | — | 56.29 | — | 81.49 | |
4 | 97.25 | — | — | 47.52 | — | 49.66 | |
淬灭剂质量浓度/(m | 自由基贡献率/% | ||||||
(甲醇) |
|
| (叔丁醇) | (对苯醌) |
| ||
0.4 | 19.60 | 16.13 | 46.31 | 49.78 | 3.47 | — | — |
0.8 | 26.68 | 3.64 | 14.12 | 37.16 | 23.04 | — | — |
2 | — | — | — | — | — | 24.62 | 9.47 |
4 | — | — | — | — | — | 30.25 | 28.95 |
用XPS研究复合材料反应前后元素的价态变化,进一步探体系除藻机理。从图12(a)XPS全谱图可知,复合材料Cu-FeOx@AC主要由Cu、Fe、O、C组成。对比反应前后,铜和铁的强度都有所下降,可能是复合催化剂在活化PMS时,部分铜、锰离子溶出,促进了自由基、和的产生,导致铁、铜离子含量均减少。
碳元素C 1s 高分辨XPS图如12(b),C 1s图谱主峰分为3个峰,依次对应键(288.18 eV),
键(286.38 eV),C—C键(284.78 eV)。在复合材料催化PMS活性后,
的峰面积增加,
明显左移,说明复合催化剂受到了氧化作用的影响,这个过程可能与催化PMS产生、有
从
(8) |
(9) |
(10) |


图12 反应前后Cu-FeOx@AC的全谱XPS谱图、C 1s、Cu 2p和Fe 2p高分辨图
Fig. 12 XPS spectra of full spectrum (a), C 1s (b), Cu 2p (c) and Fe 2p (d) of Cu-FeOx@AC before and after the reaction
(11) |
(12) |
(13) |
总之,多种作用参与了铜绿微囊藻的降解,如

图13 AC负载铁铜双金属氧化物活化PMS体系除藻机理图
Fig. 13 Algae removal mechanism of Cu-FeOx@AC/PMS system
1)采用水热法和高温煅烧法,成功制备铜铁双金属氧化物Cu-FeOx并使其负载在AC表面,得到Cu-FeOx@AC复合催化剂。通过多种表征,发现Cu-FeOx主要是CuO和Fe2O3。
2)当初始pH=6,藻细胞密度为每升1.4×1
3)通过不同体系下除藻效能对比,自由基淬灭实验和XPS分析,对除藻机理进行了研究。结果表明,复合催化剂可以通过吸附一部分藻细胞降低其在溶液中的含量,还可活化PMS还原,促进Fe(Ⅲ)与Fe(Ⅱ)、Cu(Ⅱ)与Cu(Ⅰ)之间的相互转变,产生多种氧化基团(
参考文献
Zhang H X, Li B Y, Liu Y P, et al. Immunoassay technology: research progress in microcystin-LR detection in water samples[J]. Journal of Hazardous Materials, 2022, 424: 127406. [百度学术]
Fan G D, You Y F, Wang B, et al. Inactivation of harmful cyanobacteria by Ag/AgCl@ZIF-8 coating under visible light: efficiency and its mechanisms[J]. Applied Catalysis B: Environmental, 2019, 256: 117866. [百度学术]
Pan G, Zou H, Chen H, et al. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils[J]. Environmental Pollution, 2006, 141(2): 206-212. [百度学术]
Liu S Y, Lai C, Li B S, et al. Role of radical and non-radical pathway in activating persulfate for degradation of p-nitrophenol by sulfur-doped ordered mesoporous carbon[J]. Chemical Engineering Journal, 2020, 384: 123304. [百度学术]
Wang W Q, Chen M, Wang D B, et al. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: catalytic mechanism and toxicity assessment of degradation intermediates[J]. Science of the Total Environment, 2021, 772: 145522. [百度学术]
Ma Q L, Zhang H X, Zhang X Y, et al. Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate[J]. Chemical Engineering Journal, 2019, 360: 848-860. [百度学术]
Zhu J L, Wang S, Li H C, et al. Degradation of phosphonates in co(II)/peroxymonosulfate process: performance and mechanism[J]. Water Research, 2021, 202: 117397. [百度学术]
Bai L M, Liu Z H, Wang H R, et al. Fe(II)-activated peroxymonosulfate coupled with nanofiltration removes natural organic matter and sulfamethoxazole in natural surface water: Performance and mechanisms[J]. Separation and Purification Technology, 2021, 274: 119088. [百度学术]
Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. [百度学术]
Wang J Q, B H, Yang M, et al. Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): comparison between C
Liang H Y, Zhang Y Q, Huang S B, et al. Oxidative degradation of p-chloroaniline by copper oxidate activated persulfate[J]. Chemical Engineering Journal, 2013, 218: 384-391. [百度学术]
Wu L Y, Yu Y B, Zhang Q, et al. A novel magnetic heterogeneous catalyst oxygen-defective CoFe2O4-x for activating peroxymonosulfate[J]. Applied Surface Science, 2019, 480: 717-726. [百度学术]
Xian G, Niu L J, Zhang G M, et al. An efficient CuO-γFe2O3 composite activates persulfate for organic pollutants removal: Performance, advantages and mechanism[J]. Chemosphere, 2020, 242: 125191. [百度学术]
Lyu J C, Ge M, Hu Z, et al. One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: investigation of efficiency, mechanism and degradation route[J]. Chemical Engineering Journal, 2020, 389: 124456. [百度学术]
Verma M, Kumar A, Singh K P, et al. Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: one-pot hydrothermal synthesis and its use for adsorptive removal of P
Belaissa Y, Saib F, Trari M. Removal of amoxicillin in aqueous solutions by a chemical activated carbons derived from Jujube nuts: adsorption behaviors, kinetic and thermodynamic studies[J]. Reaction Kinetics Mechanisms and Catalysis, 2022, 135: 1011-1030. [百度学术]
袁太康. C
Yuan T K. Study on C
Spataru A, Jain R, Chung J W, et al. Enhanced adsorption of orthophosphate and copper onto hydrochar derived from sewage sludge by KOH activation[J]. RSC Advances, 2016, 6(104): 101827-101834. [百度学术]
Stoia M, Muntean E, Pacurariu C, et al. Thermal behavior of MnFe2O4 and MnFe2O4/C nanocomposite synthesized by a solvothermal method[J]. Thermochimica Acta, 2017, 652: 1-8. [百度学术]
Li Z L, Guo C S, Lyu J C, et al. Tetracycline degradation by persulfate activated with magnetic Cu/CuFe2O4 composite: efficiency, stability, mechanism and degradation pathway[J]. Journal of Hazardous Materials, 2019, 373: 85-96. [百度学术]
Cao X Q, Xiao F, Lyu Z W, et al. CuFe2O4 supported on montmorillonite to activate peroxymonosulfate for efficient ofloxacin degradation[J]. Journal of Water Process Engineering, 2021, 44: 102359. [百度学术]
向平, 江雨竹, 姜文超, 等. 载铁ACF/Ni阴极电化学体系除藻效能与机制[J]. 中国环境科学, 2020, 40(11): 5010-5019. [百度学术]
Xiang P, Jiang Y Z, Jiang W C, et al. Efficiency and mechanism of algae removal by electrochemical system using iron-loaded ACF/Ni cathode[J]. China Environmental Science, 2020, 40(11): 5010-5019.(in Chinese) [百度学术]
Escobedo E, Cho K, Chang Y S. Electrochemical activation of hydrogen peroxide, persulfate, and free chlorine using sacrificial iron anodes for decentralized wastewater treatment[J]. Journal of Hazardous Materials, 2022, 423: 127068. [百度学术]
张青田, 王新华, 林超, 等. 水体pH和铜绿微囊藻增殖的关系研究[J]. 水生态学杂志, 2011, 32(2): 52-56. [百度学术]
Zhang Q T, Wang X H, Lin C, et al. Study on the relationship between pH and cell proliferation of microcystis aeruginosa[J]. Journal of Hydroecology, 2011, 32(2): 52-56.(in Chinese) [百度学术]
Yin R L, Guo W Q, Wang H Z, et al. Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: direct oxidation and nonradical mechanisms[J]. Chemical Engineering Journal, 2018, 334: 2539-2546. [百度学术]
Xu Y, Ai J, Zhang H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. Journal of Hazardous Materials, 2016, 309: 87-96. [百度学术]
Cheng X, Guo H G, Zhang Y L, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J]. Water Research, 2017, 113: 80-88. [百度学术]
Fan J H, Qin H H, Jiang S M. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: the role of superoxide anion and singlet oxygen[J]. Chemical Engineering Journal, 2019, 359: 723-732. [百度学术]
丁丽丹, 周家斌, 刘文博, 等. CuO/Bi2O3光催化耦合过一硫酸盐氧化降解盐酸四环素[J]. 环境工程学报, 2021, 15(3): 898-910. [百度学术]
Ding L D, Zhou J B, Liu W B, et al. Oxidative degradation of tetracycline hydrochloride by CuO/Bi2O3 photocatalysis coupling with peroxymonosulfate[J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 898-910.(in Chinese) [百度学术]
Zou J J, Yu J F, Tang L, et al. Analysis of reaction pathways and catalytic sites on metal-free porous biochar for persulfate activation process[J]. Chemosphere, 2020, 261: 127747. [百度学术]
Feng Y, Liu J H, Wu D L, et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280: 514-524. [百度学术]
Chen Z Q, Wang L Y, Xu H D, et al. Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A[J]. Chemical Engineering Journal, 2020, 389: 124345. [百度学术]