摘要
严控饮水氟浓度,可以有效降低人体罹患氟骨症和氟牙症的风险。近年来,铈基吸附材料在解决氟污染问题中表现优异,而铈盐与有机酸反应生成的铈基金属有机框架材料(Ce-MOFs)或其衍生物,能有效去除水中的氟离子。硝酸铈铵(Ce(NH4)2(NO3)6)和均苯三甲酸(H3BTC)在不同反应时长下生成了Ce-MOFs CeT1及其衍生物CeT2,更换H3BTC为对苯二甲酸(H2BDC),反应生成2种Ce-MOFs,CeD1和CeD2。利用XRD、BET、SEM、XPS和FTIR对材料的结构、比表面积、元素含量和组成基团,进行系统的表征;通过控制吸附时间、溶质初始浓度、溶液pH值和竞争离子种类研究4种材料的吸附性能;对实验数据进行吸附动力学模型和吸附等温模型拟合,探究吸附机理。表征结果显示,CeT1为高度配位不饱和的Ce(Ⅳ)-MOFs,CeD1为比表面积最大(1 003.10
因水质污染导致的水资源短缺,是全球最为关注的环境问题之一,而氟作为水质污染的关键因素,其危害不容忽
将吸附剂按化学组分大致分为碳质吸附剂、矿物吸附剂、高分子吸附剂、金属基吸附剂和复合吸附剂,其中金属基吸附剂具有吸附速率快、吸附容量大、选择性高等优点。常见的金属基吸附剂有铝基、镁基、铁基、锆基、镧基、铈基等,铈基吸附剂被广泛应用于各类污染物的去除且表现良
金属有机框架材料具有稳定性高、比表面积大、结构可调控等优
硝酸铈铵、氟化钠、甲酸和丙酮购自国药集团化学试剂有限公司;对苯二甲酸(H2BDC)和均苯三甲酸(H3BTC)购自阿拉丁试剂(上海)有限公司;N,N-二甲基甲酰胺(DMF)购自广东光华科技股份有限公司;实验用水均为蒸馏水;实验试剂除氟化钠为优级纯外,其余均为分析纯。
PXSJ-216F型离子计,上海仪电科学仪器股份有限公司;CP224C电子天平,奥豪斯仪器(常州)有限公司;PB-10型pH计,赛多利斯科学仪器有限公司;D8 Advance型X射线衍射分析仪(XRD),德国布鲁克公司;ASAP 2020 Plus HD88型物理吸附仪,美国麦克默瑞提克公司;Sigma500型扫描电子显微镜(SEM),德国蔡司公司;ESCALAB Xi+型X射线光电子能谱仪(XPS),美国赛默飞世尔公司;Nicolet IS5型傅里叶红外光谱仪(FTIR),美国赛默飞世尔公司;Zetasizer Nano ZSE激光粒度仪,英国马尔文公司。
实验制备的4种材料,根据有机配体与反应时间的不同,分别命名为CeT1、CeT2、CeD1和CeD2。具体制备方法如下:
CeT1:1)称取220 mg H3BTC溶于12 mL DMF和2.57 mL甲酸的混合溶液中,得到溶液A;2)制备0.533 mol/L的硝酸铈铵溶液,取6 mL放入A溶液,混合均匀转移至25 mL的反应釜内;3)将反应釜置于100 ℃的烘箱中加热20 min,放置室温后用DMF和丙酮各离心清洗3次,70 ℃鼓风干燥。
CeT2:制备步骤同上,第3)步中加热时间延长至12 h。
CeD1:1)称取177 mg H2BDC溶于6 mL DMF中,得到溶液B;2)制备0.533 mol/L的硝酸铈铵溶液,取2 mL放入B溶液中,混合均匀转移进25 mL的反应釜内;3)将反应釜置于100 ℃的烘箱中加热20 min,放置室温后用DMF和丙酮各离心清洗3次,70 ℃鼓风干燥。
CeD2:1)称取1 g硝酸铈铵和0.6 g H2BDC溶于15 mL DMF中,于25 mL的反应釜内充分溶解。2)将反应釜置于150 ℃的烘箱内加热12 h,放置室温后用DMF和丙酮各离心清洗3次,50 ℃真空干燥。
以Cu Kα为辐射源,利用X射线衍射仪对吸附剂的晶体结构进行研究;通过在孔隙结构分析仪上进行 N2吸附-解吸测试,确定比表面积、孔径分布和孔体积;采用场发射扫描电子显微镜对表面微观形貌进行表征;通过XPS光谱仪记录X射线光电子能谱,用于金属元素的价态分析;使用激光粒度分析仪在pH值为2~12的不同范围内测量Zeta电位;以溴化钾为参考,用FT-IR光谱仪采集吸附前材料的傅里叶变换红外光谱。
实验所用氟溶液为自配溶液,均为静态吸附实验。称取一定量的吸附剂投入塑料锥形瓶中,保证投加量均为0.5 g/L,将锥形瓶置于温度为25 ℃,转速为130 r/min的恒温振荡箱中反应。吸附平衡后,使用0.45 μm的微孔膜过滤,对滤后液进行测定,氟浓度检测参考《水质氟化物的测定离子选择电极法》(GB 7484—87)。吸附容量的计算方法为
, | (1) |
式中:为吸附平衡时的吸附容量,mg/g;为溶液初始质量浓度,mg/L;为溶液平衡质量浓度,mg/L;为吸附剂投加量,g/L。
称取0.1 g吸附剂投加进装有200 mL氟溶液(初始质量浓度为100 mg/L)的塑料锥形瓶中,进行静态吸附实验,分别测定不同时刻材料的剩余浓度,计算吸附容量,用假一级动力学模型(2)和假二级动力学模型(3)进行拟合
, | (2) |
, | (3) |
式中:t为取样时间,min;为t时刻的吸附容量,mg/g;为吸附平衡时的理论吸附容量,mg/g;K1为假一级动力学模型常数;K2为假二级动力学模型常数。
称取0.025 g吸附剂投入装有50 mL氟溶液(初始质量浓度为10、20、30、40、50、75、100、150、200、250 mg/L)的塑料锥形瓶中,进行静态吸附实验,吸附平衡后测定溶液浓度,计算吸附容量,用Langmuir等温模型(4)和Freundlich等温模型(5)进行拟合
, | (4) |
, | (5) |
式中:为吸附平衡时的吸附容量,mg/g;为溶液平衡质量浓度,mg/L;为理论极限吸附容量,mg/g;KL是Langmuir的模型常数;KF是Freundlich模型常数;为均质因子。
称取0.025 g吸附剂投入装有50 mL不同初始pH的氟溶液(初始质量浓度为100 mg/L)中,溶液pH值由0.1 mol/L的NaOH溶液和0.1 mol/L的HCl溶液进行调节,调节范围为2~12。吸附平衡后测定溶液浓度,计算吸附容量。
为确认材料的晶型结构,对4种材料进行X射线衍射分析,衍射图谱如

图1 4种材料吸附前XRD图谱
Fig. 1 X-Ray Diffraction of four samples before adsorption
为了观测4种吸附材料的结构参数及微观形貌,使用N2吸附-脱附实验(BET)及扫描电镜(SEM)对其表征。从

图2 4种材料的N2吸附脱附曲线图
Fig. 2 Nitrogen adsorption-desorption isotherms of four samples

图3 4种材料的孔径分布图
Fig. 3 pore size distribution of four samples
样品名称 | 比表面积/( | 孔容/(c | 平均孔径/mm |
---|---|---|---|
CeT1 | 481.38 | 0.370 0 | 3.12 |
CeT2 | 467.05 | 0.350 0 | 3.04 |
CeD1 | 1 003.10 | 0.520 0 | 2.08 |
CeD2 | 1.33 | 0.004 8 | 14.23 |

图4 4种材料吸附前的扫描电镜图
Fig. 4 SEM Images of four samples before adsorption
通过XPS分析4种吸附剂中铈元素的价态赋存情况,在拟合过程中 Ce(Ⅲ) Ce 3d3/22个自旋轨道的峰位为(885.1 eV/903.5 eV),Ce(IV)Ce 3d3/2和Ce 3d5/2 2个自旋轨道的峰位为(881.9 eV/900.3 eV)(883.1 eV/901.9 eV)、(887.0 eV/905.1 eV)和(899.5 eV/917.4 ev的伸缩振动发生在1 550~1 440 c
O的非对称拉伸振动特征峰,说明材料中包含有羧基。同时,1 380 c

图5 4种材料的Ce 3d XPS谱图和红外图
Fig. 5 Ce 3d XPS spectra and FT-IR spectra of four samples before adsorption
为了探究吸附时间与吸附容量之间的关系,将4种吸附剂在初始浓度为100 mg/L的氟溶液中进行吸附实验。当吸附时间在0~30 min时,CeT1、CeT2、CeD1和CeD2处于快速吸附阶段,分别完成实验最大吸附容量的77.4%、77.7%、83.6%和84.8%。当吸附进行到180 min时,CeD1和CeD2已经达到了吸附平衡,而CeT1和CeT2的吸附容量则随着时间的推移缓慢增加,直至实验结束(1 440 min)。其中,CeT1和CeT2的平衡时间较长,推测与CeT1和CeT2的孔径大小有关,3 nm左右的孔径增大了溶质分子进入孔道的扩散阻力,降低吸附速

图6 4种材料吸附氟离子的动力学曲线
Fig. 6 Adsorption kinetics of fluorion onto four samples
材料名称 | 假一级动力学模型 | 假二级动力学模型 | ||||
---|---|---|---|---|---|---|
/(mg· | /(mg· | |||||
CeT1 | 63.81 | 0.21 | 0.891 00 | 66.71 |
5.10×1 | 0.958 00 |
CeT2 | 113.85 | 0.11 | 0.962 00 | 119.24 |
1.43×1 | 0.988 00 |
CeD1 | 53.37 | 0.04 | 0.943 00 | 57.77 |
0.87×1 | 0.923 00 |
CeD2 | 123.97 | 0.12 | 0.993 15 | 128.94 |
1.55×1 | 0.993 26 |
为了探究4种材料的吸附性能,分别配置不同浓度的氟溶液进行吸附等温实验。

图7 4种材料吸附氟离子的吸附等温线
Fig. 7 Adsorption isotherms of fluorion onto four samples
材料名称 | Langmuir 模型 | Freundlich 模型 | ||||
---|---|---|---|---|---|---|
/(mg· | /(L·m | |||||
CeT1 | 93.59 | 0.09 | 0.496 | 5.05 | 32.82 | 0.903 |
CeT2 | 118.95 | 1.42 | 0.877 | 5.64 | 56.37 | 0.897 |
CeD1 | 60.45 | 0.10 | 0.948 | 4.78 | 19.31 | 0.854 |
CeD2 | 124.55 | 0.40 | 0.974 | 5.65 | 53.32 | 0.821 |
为了分析4种材料在不同pH值溶液中的适应能力,测算了不同pH值溶液下材料的吸附容量。如

图8 不同pH值下4种材料的吸附容量、HF的酸度系数和4种材料的Zeta 电位
Fig. 8 Adsorption capacity of fluorion at different pH values ,pKa of HF and Zeta-potentials of four samples
在含氟的天然水体中,通常还会有其他共存离子,诸如C

图9 4种材料在竞争离子存在时的吸氟离子吸附容量
Fig. 9 Adsorption capacity of fluorion on four samples under anionic competition
为了验证吸附材料的实际应用效果,参考陕西榆林某村地下水水质,配置模拟水体,进行氟离子去除实

图10 4种材料在模拟水体中的氟离子去除率
Fig. 10 The removal rate of fluorion on four samples in simulated water
为了进一步明确4种材料的吸附机理,对吸附前后的XPS进行分析。如

图11 4种材料吸附前后的XPS全谱图
Fig. 11 XPS spectra of four samples before and after adsorption
4种材料吸附前后的Ce 3d 峰位的变化情况如

图12 吸附前后4种材料的Ce 3d XPS谱图
Fig. 12 Ce 3d XPS spectra of four samples before and after adsorption
对吸附后的材料用XRD和SEM进行表征,判断吸附产物的物相组成,分析各材料吸附机理的异同。图13(a)(c)显示,CeT1和CeD1在完成氟离子吸附后的XRD图谱中出现CeO2和CeF3的特征衍射峰,CeT1和CeD1的CeO2峰,分别位于2θ=(28.21°、32.93°、47.22°、56.86°、58.46°、75.94°)和2θ=(28.76°、46.98°、56.88°、58.54°、76.01°),其数据与JCPDS卡34-0394相比仅有<1°的偏移,这是由于无定形化合物的存在使得CeO2的晶格产生畸变,通常以静电作用吸附的物质会生成无定形化合

图13 吸附前后4种材料的XRD图谱(内插吸附后材料的扫描电镜图)
Fig. 13 XRD patterns of four samples before and after adsorption (inset: SEM images of those four samples after adsorption)
利用MOFs的结构可调控性和Ce的双价态特点,对Ce-MOFs及其衍生物进行金属端配位结构和价态的调控,获得配位不饱和的CeT1、大比表面积的CeD1和Ce(Ⅲ)占比较大的CeT2、CeD2。通过对XRD、XPS、SEM等表征和实验数据的分析可知,Ce(Ⅲ)对于氟离子具有更强的吸引力,而不饱和配位的存在可有效增加吸附位点。如

图14 4种材料吸附机理简图
Fig. 14 Adsorption mechanism of four materials
以硝酸铈铵和对苯二甲酸或均苯三甲酸为原料,通过溶剂热法制备了4种结构与价态各异的吸附材料CeT1、CeT2、CeD1和CeD2,研究了4种材料的结构特征和氟吸附性能。 结果表明,CeT1、CeT2、CeD1和CeD2的最大氟吸附容量分别为99.38 mg/g、142.45 mg/g、60.45 mg/g和124.55 mg/g,其中,CeT2和CeD2的除氟能力突出,这是因为CeT2和CeD2中铈原子以Ce(Ⅲ)为主,Ce(Ⅲ)与氟离子的键合比Ce(IV)更稳定、强烈,最终形成了CeF3沉淀。同时,Ce(Ⅲ)材料有良好的pH值适应性,在模拟水体除氟时也表现出良好的吸附效果。CeT1和CeD1同为Ce(Ⅳ)-MOFs,在CeT1比表面积小于CeD1的情况下,CeT1的最大氟吸附容量仍高于CeD1,这主要是因为CeT1为6倍配位有机连接剂形成的金属团簇,不饱和配位提高CeT1表面正电性的同时,引入大量吸附位点,增强氟吸附效果。通过调控铈基吸附剂的配位结构和金属价态可以有效促进除氟效能,获得吸附容量高、吸附速度快、选择性强、吸附稳定的材料。
参考文献
Ayoob S, Gupta A K. Fluoride in drinking water: a review on the status and stress effects[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(6): 433-487. [百度学术]
Kumar P S, Suganya S, Srinivas S, et al. Treatment of fluoride-contaminated water. A review[J]. Environmental Chemistry Letters, 2019, 17(4): 1707-1726. [百度学术]
He X D, Li P Y, Ji Y J, et al. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: occurrence, distribution and management[J]. Exposure and Health, 2020, 12(3): 355-368. [百度学术]
Zheng L X, Xu X F. Optimization of the aluminum based compound flocculant preparation conditions and fluorine removal performance validation by response surface method[J]. IOP Conference Series: Earth and Environmental Science, 2021, 836(1): 012021. [百度学术]
Singh S, German M, Chaudhari S, et al. Fluoride removal from groundwater using Zirconium Impregnated Anion Exchange Resin[J]. Journal of Environmental Management, 2020, 263: 110415. [百度学术]
Moran Ayala L I, Paquet M, Janowska K, et al. Water defluoridation: nanofiltration vs membrane distillation[J]. Industrial & Engineering Chemistry Research, 2018, 57(43): 14740-14748. [百度学术]
Koh K Y, Yang Y, Chen J P. Critical review on lanthanum-based materials used for water purification through adsorption of inorganic contaminants[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(10): 1773-1823. [百度学术]
He J J, Xu Y H, Wang W, et al. Ce(III) nanocomposites by partial thermal decomposition of Ce-MOF for effective phosphate adsorption in a wide pH range[J]. Chemical Engineering Journal, 2020, 379: 122431. [百度学术]
Mukhopadhyay K, Ghosh A, Das S K, et al. Synthesis and characterisation of cerium(iv)-incorporated hydrous iron(iii) oxide as an adsorbent for fluoride removal from water[J]. RSC Advances, 2017, 7(42): 26037-26051. [百度学术]
Yang J M, Ying R J, Han C X, et al. Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal–organic framework: effects of Ce(iii) doping[J]. Dalton Transactions, 2018, 47(11): 3913-3920. [百度学术]
王隆杰, 范鸿川, 秦渝, 等. 金属有机框架材料在分离分析领域的研究进展[J]. 高等学校化学学报, 2021, 42(4): 1167-1176. [百度学术]
Wang L J, Fan H C, Qin Y, et al. Research progress of metal-organic frameworks in the field of chemical separation and analysis[J]. Chemical Journal of Chinese Universities, 2021, 42(4): 1167-1176.(in Chinese) [百度学术]
Cirujano F G, Martin N, Wee L H. Design of hierarchical architectures in metal–oganic frameworks for catalysis and adsorption[J]. Chemistry of Materials, 2020, 32(24): 10268-10295. [百度学术]
Smolders S, Lomachenko K A, Bueken B, et al. Unravelling the redox-catalytic behavior of Ce4+ metal-organic frameworks by X-ray absorption spectroscopy[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2018, 19(4): 373-378. [百度学术]
Furukawa H, Gándara F, Zhang Y B, et al. Water adsorption in porous metal–organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. [百度学术]
Leite A K P, Barros B S, Kulesza J, et al. Modulator effect of acetic acid on the morphology of luminescent mixed lanthanide-organic frameworks[J]. Materials Research, 2017, 20(suppl 2): 681-687. [百度学术]
Lammert M, Wharmby M T, Smolders S, et al. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity[J]. Chemical Communications, 2015, 51(63): 12578-12581. [百度学术]
D’Arras L, Sassoye C, Rozes L, et al. Fast and continuous processing of a new sub-micronic lanthanide-based metal-organic framework[J]. New Journal of Chemistry, 2014, 38(4): 1477-1483. [百度学术]
Gu Y, Xie D H, Ma Y, et al. Size modulation of zirconium-based metal organic frameworks for highly efficient phosphate remediation[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 32151-32160. [百度学术]
He J J, Xu Y H, Shao P H, et al. Modulation of coordinative unsaturation degree and valence state for cerium-based adsorbent to boost phosphate adsorption[J]. Chemical Engineering Journal, 2020, 394: 124912. [百度学术]
Chen X, Chen X, Yu E Q, et al. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion[J]. Chemical Engineering Journal, 2018, 344: 469-479. [百度学术]
Rego R M, Sriram G, Ajeya K V, et al. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification[J]. Journal of Hazardous Materials, 2021, 416: 125941. [百度学术]
Fahami A, Beall G W, SynthesisBetancourt T. bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite[J]. Materials Science & Engineering C, Materials for Biological Applications, 2016, 59: 78-85. [百度学术]
Merodio-Morales E E, Reynel-Ávila H E, Mendoza-Castillo D I, et al. Lanthanum- and cerium-based functionalization of chars and activated carbons for the adsorption of fluoride and arsenic ions[J]. International Journal of Environmental Science and Technology, 2020, 17(1): 115-128. [百度学术]
Liu M, Li S J, Tang N, et al. Highly efficient capture of phosphate from water via cerium-doped metal-organic frameworks[J]. Journal of Cleaner Production, 2020, 265: 121782. [百度学术]
廖庆玲, Nguyen X S, 侯静涛, 等. 功能化SBA-15介孔材料的制备及其吸附性能研究[J]. 材料科学与工艺, 2018, 26(5): 26-32. [百度学术]
Liao Q L, Nguyen X S, Hou J T, et al. Synthesis of functionalized SBA-15 mesoporous materials and their adsorption properties[J]. Materials Science and Technology, 2018, 26(5): 26-32.(in Chinese) [百度学术]
徐艳, 杨宏国, 牛慧斌, 等. 磁性纳米颗粒Fe3O4的醇改性制备机理及应用[J]. 高等学校化学学报, 2021, 42(8): 2564-2573. [百度学术]
Xu Y, Yang H G, Niu H B, et al. Preparation mechanism and application of alcohol-modified Fe3O4 magnetic nanoparticles[J]. Chemical Journal of Chinese Universities, 2021, 42(8): 2564-2573.(in Chinese) [百度学术]
Shao Y N, Li J M, Fang X Y, et al. Chemical modification of bamboo activated carbon surface and its adsorption property of simultaneous removal of phosphate and nitrate[J]. Chemosphere, 2022, 287(1): 132118. [百度学术]
Wu L P, Lin X Y, Zhou X B, et al. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum[J]. Applied Surface Science, 2016, 384: 466-479. [百度学术]
Dahle J T, Arai Y. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles[J]. International Journal of Environmental Research and Public Health, 2015, 12(2): 1253-1278. [百度学术]
Dong H, Tang H, Shi X X, et al. Enhanced fluoride removal from water by nanosized cerium oxides impregnated porous polystyrene anion exchanger[J]. Chemosphere, 2022, 287(1): 131932. [百度学术]
Lammert M, Glißmann C, Reinsch H, et al. Synthesis and characterization of new Ce(IV)-MOFs exhibiting various framework topologies[J]. Crystal Growth & Design, 2017, 17(3): 1125-1131. [百度学术]
Su Y, Yang W Y, Sun W Z, et al. Synthesis of mesoporous cerium-zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water[J]. Chemical Engineering Journal, 2015, 268: 270-279. [百度学术]
卢晗锋, 黄金星, 周瑛, 等. 沉淀剂对Cu-Mn-Ce复合氧化物催化剂结构和性能的影响[J]. 化工学报, 2015, 66(6): 2105-2111. [百度学术]
Lu H F, Huang J X, Zhou Y, et al. Effect of precipitants on structure and performance of Cu-Mn-Ce mixed oxide catalysts[J]. CIESC Journal, 2015, 66(6): 2105-2111.(in Chinese) [百度学术]
刘莎. 榆林风沙滩区地下水水质评价[J]. 地下水, 2022, 44(4): 46-49. [百度学术]
Liu S. Evaluation of groundwater quality in Yulin Wind Beach Area[J]. Ground Water, 2022, 44(4): 46-49.(in Chinese) [百度学术]
Wei Y F, Wang L, Wang J Y. Cerium alginate cross-linking with biochar beads for fast fluoride removal over a wide pH range[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128161. [百度学术]
Ding J, Lin J D, Xiao J J, et al. Effect of fluoride doping for catalytic ozonation of low-temperature denitrification over cerium–titanium catalysts[J]. Journal of Alloys and Compounds, 2016, 665: 411-417. [百度学术]
Shen W, Wang X D, Cattrall R W, et al. XPS analysis of hydroxide ion surface reactions on reactions on CeF3 and LaF3 fluoride ion-selective electrodes[J]. Electroanalysis, 1997, 9(12): 917-921. [百度学术]
Fan K, He M, Dharanipragada N V R A, et al. Amorphous WO3 induced lattice distortion for a low-cost and high-efficient electrocatalyst for overall water splitting in acid[J]. Sustainable Energy & Fuels, 2020, 4(4): 1712-1722. [百度学术]
Zhou C, Zhu D C. Preparation and chemical mechanical polishing performance of CeO2/CeF3 composite powders[J]. Micro & Nano Letters, 2018, 13(1): 117-121. [百度学术]
Wang Y W, Yang J Z, Zhao Y L, et al. Intentional hydrolysis to overcome the hydrolysis problem: detection of Ce(iv) by producing oxidase-like nanozymes with F-[J]. Chemical Communications, 2019, 55(89): 13434-13437. [百度学术]
Wang L J, Zhang W R, Zhao Y B, et al. Fabrication of silver nanoparticles loaded flowerlike CeF3 architectures and their antibacterial activity[J]. Journal of Physics & Chemistry of Solids, 2018, 120: 154-160. [百度学术]