摘要
聚合物基复合材料在不同温度下的拉伸断裂强度一直是人们关注的焦点,颗粒作为一种常见增强相可以显著提高聚合物基复合材料的拉伸断裂强度。然而,随着颗粒体积分数的增加,颗粒将会发生团聚现象,从而影响增强效果。针对颗粒增强聚合物基复合材料,通过计及颗粒团聚的影响,以及材料热物理性能随温度的演化,建立了一个考虑团聚影响的温度相关性拉伸断裂强度理论表征模型。模型得到了实验数据的良好验证。研究成果为定量表征不同颗粒含量、不同温度下复合材料的拉伸断裂强度提供了一种有效途径,加深了对不同温度下团聚现象对复合材料力学性能影响的认识。
颗粒增强聚合物基复合材料由于其优异的力学性能在航空航天、汽车工业和能源化工等领域中得到了广泛应
在本研究中,考虑材料热物理性能随温度的演化及颗粒团聚的影响,建立了一个考虑颗粒团聚影响的聚合物基复合材料温度相关性拉伸断裂强度理论表征模型,并利用获取到的所有3种颗粒增强聚合物基复合材料的实验数据对模型进行了验证,为定量表征不同颗粒含量、不同温度下复合材料的拉伸断裂强度提供了一种有效途径,加深了对不同温度下团聚现象对复合材料力学性能影响的认识。
针对颗粒增强聚合物基复合材料,Dai
, | (1) |
式中:σc为复合材料的拉伸断裂强度;σm为基体的拉伸断裂强度;σn0为平均界面强度;Vp为颗粒体积分数。
当颗粒体积分数达到一定值时,会出现团聚现象,此后复合材料的拉伸断裂强度随着颗粒体积分数的增加而降
, | (2) |
式中:Vpc为颗粒临界体积分数,表示增强颗粒对复合材料拉伸断裂强度增强效果达到最大时对应的体积分数;η为聚集因子,反映颗粒团聚削弱复合材料拉伸断裂强度的程度,其值受颗粒的形状和基体的类型等因素的影
将
。 | (3) |
Pérez
, | (4) |
式中:νm(T)和Em(T)分别为聚合物基体的温度相关性泊松比和杨氏模量;γ(T)为界面的温度相关性断裂表面能,假设其近似等于基体的断裂表面
Deng
, | (5) |
式中:γ(T0)为任意参考温度T0下聚合物材料的界面断裂表面能;Cp(T)为温度相关性定压比热容;对于结晶聚合物和半结晶聚合物,Tmelting为熔融温度,对于非晶聚合物,Tmelting为黏流温
。 | (6) |
Li
。 | (7) |
将
(8) |
式中:σc(T)为颗粒增强聚合物基复合材料温度相关性拉伸断裂强度;σm(T0)和Em(T0)为聚合物基体在任意一个参考温度T0下的拉伸断裂强度和杨氏模量;Vp为颗粒体积分数;Vpc(T)为温度相关性颗粒临界体积分数;γ(T0)为任意一个参考温度T0下界面断裂表面能;Em(T)和νm(T)为基体的温度相关性杨氏模量和泊松比;Kt(T)为温度相关性应力集中系数;rp(T)为温度相关性的颗粒半径大小;Cp(T)为温度相关性定压比热容;对于结晶聚合物和半结晶聚合物,Tmelting为熔融温度,对于非晶聚合物,Tmelting为黏流温
通过查阅文献[

图1 CdS/PMMA复合材料在不同温度下拉伸断裂强度随体积分数变化的实验数据
Fig. 1 Experimental values of tensile strength with volume fraction of CdS/PMMA composites at different temperatures

图2 CdS/PS在不同温度下拉伸断裂强度随体积分数变化的实验数据
Fig. 2 Experimental values of tensile strength with volume fraction of CdS/PS composites at different temperatures

图3 ZnS/PMMA在不同温度下拉伸断裂强度随体积分数变化的实验数据
Fig. 3 Experimental values of tensile strength with volume fraction of ZnS/PMMA composites at different temperatures
温度/K | 多项式函数 | Vpc/% |
---|---|---|
303 |
σc=7.98+1 960.41vp-67 398.72v | 1.45 |
323 |
σc=2.27+2 899.20vp-109 084.05v | 1.33 |
343 |
σc=0.80+368.29vp-12 842.99v | 1.43 |
363 |
σc=7.98+1 960.41vp-1 292v | 1.45 |
温度/K | 多项式函数 | Vpc/% |
---|---|---|
303 |
σc=5.95+2 974.97vp-161 986.61v | 0.92 |
323 |
σc=5.14+2 907.75vp-161 837.41v | 0.90 |
343 |
σc=10.04+555.37vp-30 089.62v | 0.92 |
353 |
σc=5.95+2 974.97vp-161 986.61v | 0.92 |
363 |
σc=-1.28+436.19vp-23 498.75v | 0.93 |
温度/K | 多项式函数 | Vpc/% |
---|---|---|
323 |
σc=7.84+1 071.93vp-26 346.15v | 2.00 |
343 |
σc=1.22+307.20vp-8 012.82v | 1.92 |
363 |
σc=0.12+83.43vp-1 987.18v | 2.10 |
材料参数 | CdS/PMMA | CdS/PS | ZnS/PMMA |
---|---|---|---|
T0/K |
30 |
30 |
32 |
Vp/% |
1.6; 2. |
1.37; 1.8 |
2. |
νm |
0.3 |
0.35 |
0.3 |
rp/nm |
1.5 |
1 |
|
γ(T0)/(J∙ |
1.1 |
3 |
0.7 |
σm(T0)/MPa |
14.6 |
10. |
12.5 |
Tmelting/K |
43 |
37 |
43 |
Em(T)/MPa |
303K: 1 59 |
303K: 1 74 |
323K: 1 24 |
323K: 1 24 |
323K: 1 66 |
343K: 5 | |
343K: 5 |
343K: 1 18 |
363K: | |
363K: |
353K: 23 | ||
363K: 35. | |||
ρ/(g·c |
CdS: 4.8 | ||
Cp(T)/(J·k |
PMMA: -6.35×1 | ||
PS: -5.197×1 |
Agrawal

图4 颗粒增强聚合物基复合材料拉伸断裂强度在不同温度下的预测结果与实验数据对比
Fig. 4 Comparison of predicted and experimental tensile fracture strength of particle-reinforced polymer composites at different temperatures
Agrawal

图5 颗粒增强聚合物基复合材料拉伸断裂强度在不同温度下的预测结果与实验数据对比
Fig. 5 Comparison of predicted and experimental tensile fracture strength of particle-reinforced polymer composites at different temperatures
Agrawal

图6 颗粒增强聚合物基复合材料拉伸断裂强度在不同温度下的预测结果与实验数据对比(2.5% ZnS/PMMA复合材料)
Fig. 6 Comparison of predicted and experimental tensile fracture strength of particle-reinforced polymer composites at different temperatures(2.5% ZnS/PMMA composites)
1)建立了一个考虑颗粒团聚影响的聚合物基复合材料温度相关性拉伸断裂强度理论表征模型。该模型计及颗粒团聚的影响,以及材料热物理性能随温度的演化。通过与获取到的所有3种材料(CdS/PMMA、CdS/PS和ZnS/PMMA)的实验数据的对比,验证了模型的有效性;相比于文献[
2)根据一元二次多项式对CdS/PMMA、CdS/PS和ZnS/PMMA 3种复合材料在不同温度、不同体积分数下拉伸断裂强度实验数据的拟合,获得了这3种复合材料在不同温度下的临界体积分数,得到了临界体积分数对温度不敏感的结论。
参考文献
Dai H L, Mei C, Rao Y N. A novel method for prediction of tensile strength of spherical particle-filled polymer composites with strong adhesion[J]. Polymer Engineering & Science, 2017, 57(2): 137-143. [百度学术]
Li Y, Li W G, Deng Y, et al. Theoretical model for the tensile strength of polymer materials considering the effects of temperature and particle content[J]. Materials Research Express, 2018, 6(1): 015315. [百度学术]
Li Y, Li W G, Lin X, et al. Theoretical modeling of the temperature dependent tensile strength for particulate-polymer composites[J]. Composites Science and Technology, 2019, 184: 107881. [百度学术]
Wang R Z, Li W G, Li D Y, et al. A new temperature dependent fracture strength model for the ZrB2-SiC composites[J]. Journal of the European Ceramic Society, 2015, 35(10): 2957-2962. [百度学术]
Jayaseelan C, Padmanabhan P, Athijayamani A, et al. Effect of mechanical properties on banana macro particle reinforced epoxy composites[J]. Indian Journal of Engineering and Materials Sciences, 2020, 27(3): 643-648. [百度学术]
Jayaseelan C, Padmanabhan P, Athijayamani A, et al. Comparative investigation of mechanical properties of epoxy composites reinforced with short fibers, macro particles, and micro particles[J]. Bioresources, 2017, 12(2): 2864-2871. [百度学术]
Miwa M, Horiba N. Effects of fibre length on tensile strength of carbon/glass fibre hybrid composites[J]. Journal of Materials Science, 1994, 29(4): 973-977. [百度学术]
Alam M N, Choi J. Highly reinforced magneto-sensitive natural-rubber nanocomposite using iron oxide/multilayer graphene as hybrid filler[J]. Composites Communications, 2022, 32: 101169. [百度学术]
Zhu Z B, Lu K Y, Ling H, et al. Enhanced longitudinal compressive strength of CFRP composites with interlaminar CNT film prepreg from hot-melt pre-impregnation[J]. Composites Communications, 2023, 37: 101457. [百度学术]
Nicolais L, Nicodemo L. The effect of particles shape on tensile properties of glassy thermoplastic composites[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 1974, 3(3): 229-243. [百度学术]
杨济世, 栗娜, 孙东阳, 等. 碳纤维/玻璃纤维混编编织复合材料顶盖中横梁三点弯强度分析[J]. 重庆大学学报, 2019, 42(2): 72-81. [百度学术]
Yang J S, Li N, Sun D Y, et al. Three-point bending strength analysis of middle cross beam-roof made of carbon/glass fiber-reinforced and 2D triaxial braided composites[J]. Journal of Chongqing University, 2019, 42(2): 72-81. (in Chinese) [百度学术]
栾佰峰, 裴英飞, 黄天林, 等. 颗粒增强铝基复合材料的制备及热膨胀性能[J]. 重庆大学学报, 2010, 33(8): 136-142. [百度学术]
Luan B F, Pei Y F, Huang T L, et al. Fabrication and thermal expansion properties of particle reinforced Al matrix composites[J]. Journal of Chongqing University, 2010, 33(8): 136-142. (in Chinese) [百度学术]
黄宏志, 刘燕, 邬昌丽. 铁磁颗粒增强橡胶复合材料的力学性能探究[J]. 中国高新科技, 2018(23): 81-84. [百度学术]
Huang H Z, Liu Y, Wu C L. Study on mechanical properties of ferromagnetic particle reinforced rubber composites[J]. China High and New Technology, 2018(23): 81-84. (in Chinese) [百度学术]
Ran Y, Li Y D, Zeng J B. Dynamic crosslinking towards well-dispersed cellulose nanofiber reinforced epoxy vitrimer composites[J]. Composites Communications, 2022, 33: 101228. [百度学术]
Slipenyuk A, Kuprin V, Milman Y, et al. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio[J]. Acta Materialia, 2006, 54(1): 157-166. [百度学术]
Bora M Ö. Evaluation of volcanic ash concentration effect on mechanical properties of poly(vinyl chloride) composites[J]. Acta Physica Polonica A, 2015, 127(4): 1004-1006. [百度学术]
Agrawal S, Patidar D, Saxena N S. Investigation of temperature-dependent mechanical properties of CdS/PMMA nanocomposites[J]. Journal of Composite Materials, 2011, 45(24): 2507-2514. [百度学术]
Agarwal S, Patidar D, Saxena N S. Study on glass transition temperature and mechanical properties of cadmium sulfide/polystyrene nanocomposites[J]. Polymer Engineering & Science, 2013, 53(6): 1223-1229. [百度学术]
Agarwal S, Patidar D, Saxena N S. Effect of ZnS nanofiller and temperature on mechanical properties of poly(methyl methacrylate)[J]. Journal of Applied Polymer Science, 2012, 123(4): 2431-2438. [百度学术]
Boisvert J P, Persello J, Guyard A. Influence of the surface chemistry on the structural and mechanical properties of silica-polymer composites[J]. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(23): 3127-3138. [百度学术]
Meguid S A, Sun Y. On the tensile and shear strength of nano-reinforced composite interfaces[J]. Materials & Design, 2004, 25(4): 289-296. [百度学术]
Pérez E, Lauke B. Calculation of debonding strength at the interface of particles with different shapes and matrix[J]. Composite Structures, 2017, 167: 262-270. [百度学术]
胡福增, 郑安呐, 张群安. 聚合物及其复合材料的表界面[M]. 北京: 中国轻工业出版社, 2001: 89. [百度学术]
Hu F Z, Zheng A N, Zhang Q A. Surface interfaces of polymers and their composites[M]. Beijing: China Light Industry Press, 2001, 89. (in Chinese) [百度学术]
Deng Y, Li W G, Wang R Z, et al. Temperature dependent first matrix cracking stress model for the unidirectional fiber reinforced ceramic composites[J]. Journal of the European Ceramic Society, 2017, 37(4): 1305-1310. [百度学术]
Yang M Q, Li W G, He Y, et al. Modeling the temperature dependent ultimate tensile strength of fiber/polymer composites considering fiber agglomeration[J]. Composites Science and Technology, 2021, 213: 108905. [百度学术]
Wang R Z, Li W G, Ji B H, et al. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model[J]. Journal of the Mechanics and Physics of Solids, 2017, 107: 365-378. [百度学术]
Li W G, Zhang X H, Kou H B, et al. Theoretical prediction of temperature dependent yield strength for metallic materials[J]. International Journal of Mechanical Sciences, 2016, 105: 273-278. [百度学术]
Shin D K, Lee J J, Lyu M Y. A study on the impact failure mechanism of aluminum-PMMA interfacial crack[J]. Key Engineering Materials, 2000, 183/184/185/186/187: 259-264. [百度学术]
Rinde J A. Poisson’s ratio for rigid plastic foams[J]. Journal of Applied Polymer Science, 1970, 14(8): 1913-1926. [百度学术]
Kusy R P, Katz M J. Generalized theory of the total fracture surface energy for glassy organic polymers[J]. Polymer, 1978, 19(11): 1345-1357. [百度学术]
Katsamanis F G, Delides C G. Fracture surface energy measurements of PMMA: a new experimental approach[J]. Journal of Physics D: Applied Physics, 1988, 21(1): 79-86. [百度学术]
Chand N, Vashishtha S R. Development, structure and strength properties of PP/PMMA/FA blends[J]. Bulletin of Materials Science, 2000, 23(2): 103-107. [百度学术]
符秀丽, 唐为华. 硫化镉纳米结构的制备与光学性质研究[J]. 稀有金属材料与工程, 2009, 38(S2):1047-1050. [百度学术]
Fu X L, Tang W H. Fabrication and optical properties of CdS nanostructures[J]. Rare Metal Materials and Engineering, 2009, 38(S2):1047-1050. (in Chinese) [百度学术]
王敦青, 焦秀玲, 陈代荣. 硫化锌性质、用途及制备方法概述[J]. 山东化工, 2003, 32(2):4. [百度学术]
Wang D Q, Jiao X L, Chen D R. Brief introduction on properties,synthesis and application of zinc sulfide[J]. Shandong Chemical Industry, 2003, 32(2):4. (in Chinese) [百度学术]
Mark J E. Physical properties of polymers handbook[M]. 2nd ed. New York: Springer, 2007. [百度学术]