摘要
硼基纳米材料因其独特分子结构和化学键成为团簇科学研究的重点。基于卡利普索结构预测程序和密度泛函理论,在PBE0/6-311+G(d)水平下系统分析了碱金属M2(M=Li, Na, K)原子掺杂B团簇的结构和特性。结构搜索发现,所有全局极小结构均呈现管状结构。除Li2B18(C1点群对称)外,其他高对称结构(D9d点群对称)中2个掺杂碱金属原子均位居管两侧的对称轴线上。基于全局极小结构的稳定性分析表明,K2B18和Li2B团簇在各自体系中拥有相对高的稳定性。电荷研究发现,掺杂体系中电荷从碱金属M原子向硼原子转移。磁性分析表明,闭壳层电子结构体系(Li2B18、Na2B18和K2B18)总磁矩为0,开壳层电子结构体系(Li2B、Na2B和K2B)分别拥有1 μB的总磁矩。分析偶极矩和极化率发现,高对称性结构对应的偶极矩和第一超极化率为0。此外,基于Multiwfn软件,拟合出了体系的光电子能谱、红外谱和拉曼谱。最后,讨论了体系的温度和热力学参数(定容热容Cv和标准熵S)之间的关系。
硼是一种典型的缺电子元素,具有原子半径小、电离能高、配位数大等特点,硼及其化合物表现出明显不同的结构、化学成键和物理化学性质,成为目前团簇科学的研究重
B团簇结构已被实验和理论验证,2种团簇均拥有C3v点群对称结
结构搜索工作在吉林大学马琰铭教授课题组研发的基于粒子群优化算法的卡利普索结构预测程序(crystal structure analysis by particle swarm optimization,CALYSPO)基础上进
基于Gaussian下的PBE0/6-311+G(d)和ORCA下的B3LYP-D3/def2-TZVP方法,确定了B和M2B(M=Li, Na, K)团簇的全局极小和低能异构体结构,具体结果见

图1 M2B(M=Li, Na, K)团簇的全局极小和低能异构体结构、点群对称和PBE0/6-311+G(d)和B3LYP-D3/def2-TZVP方法下的相对能量(eV),B、Li、Na和K原子分别用黄色、蓝色、红色和橙色小球表示
Fig. 1 Global minimal structure and low-energy isomers of M2B (M=Li, Na, K) clusters, along with the point group symmetry and relative energy (eV) at PBE0/6-311+G(d) and B3LYP-D3/def2-TZVP levels . B, Li, Na and K atoms are marked in yellow, blue, red and orange, respectively

图2 M2B(M=Li, Na, K)团簇的全局极小结构参数,B、Li、Na和K原子分别用黄色、蓝色、红色和橙色小球表示
Fig. 2 Structural parameters of global minimum structures of M2B (M=Li, Na, K) clusters. B, Li, Na and K atoms are marked in yellow, blue, red and orange, respectively
团簇 | 对称性 | Eb | Ed | Egap | Wiberg键级 | |||
---|---|---|---|---|---|---|---|---|
B-B上 | B-B下 | B-B上下 | M-B | |||||
Li2B18 | C1 | 4.96 | 6.20 | 2.32 | 0.833~0.855 | 0.816~0.864 | 0.764~0.779 | 0.059~0.229 |
Na2B18 | D9d | 4.93 | 5.43 | 2.36 | 0.854 | 0.854 | 0.783 | 0.123 |
K2B18 | D9d | 4.97 | 6.17 | 2.61 | 0.875 | 0.875 | 0.795 | 0.102 |
Li2B | C2h | 4.63 | 4.61 | 1.31 | 0.874 | 0.874 | 0.722 | 0.158 |
Na2B | D9d | 4.62 | 3.48 | 1.28 | 0.886 | 0.886 | 0.735 | 0.136 |
K2B | D9d | 4.68 | 3.66 | 1.25 | 0.909 | 0.909 | 0.746 | 0.109 |
由
对体系的稳定性可通过HOMO-LUMO能隙(Egap)、平均结合能(Eb)和掺杂能(Ed)分析,其中,Eb和Ed公式如下。
(1) |
式中,E为各团簇对应的能量值,计算结果见
采用PBE0泛函和6-311+G(d)基组对M2B(M=Li, Na, K)团簇全局极小结构进行了自然布局(natural population analysis, NPA)分析,结果见
团簇 | 电荷/e | 局域磁矩/μB | 总磁矩/μB | |||
---|---|---|---|---|---|---|
M1 | M2 | M1 | M2 | B | ||
Li2B18 | 0.268 | 0.093 | 0.000 | 0.000 | 0.000 | 0.00 |
Na2B18 | 0.230 | 0.230 | 0.000 | 0.000 | 0.000 | 0.00 |
K2B18 | 0.536 | 0.536 | 0.000 | 0.000 | 0.000 | 0.00 |
Li2B | 0.160 | 0.160 | 0.006 | 0.006 | 0.994 | 1.00 |
Na2B | 0.222 | 0.222 | 0.007 | 0.007 | 0.993 | 1.00 |
K2B | 0.588 | 0.588 | 0.017 | 0.017 | 0.983 | 1.00 |
闭壳层体系(Li2B18、Na2B18和K2B18)的每个轨道上均填充2个电子,电子两两配对,总自旋磁矩为0,即发生了“磁矩猝灭”现象,体系不具有磁性。而开壳层体系(Li2B、Na2B和K2B)中,电子占据不同的α和β轨道,对应的电子占据数分别为(49,48)(57,56)和(65,64),电子在α轨道上的占据数比在β轨道数上的占据数多1个。由于每个轨道对应一个玻尔磁子,因此,上述体系均拥有1 μB的总磁矩。此外,

图3 (M=Li, Na, K)团簇全局极小结构中M和B原子的局域磁矩
Fig. 3 Local spin magnetic moments of M and B atoms for the global minimum structures of (M=Li, Na, K) clusters
磁矩也均相等。而且,每个原子的局域磁矩均为正值,意味着M和B原子对总磁矩起增强作用,总磁矩主要来自于B原子局域磁矩的贡献。此外,对于M2B(M=Li, Na, K)体系,随着掺杂原子序数增大,掺杂原子的局域磁矩也增大。主要有以下3个原因:首先,从结构上看,由于电子角动量的对称性,高对称性结构(C2h, D9d, D9d点群对称)团簇对称位置上M原子的局域磁矩相同。对称性的升高会减小电子带宽,增强原子的局域磁矩。其次,从转移电荷数量分析,电荷转移数越多,原子之间的磁性越强,原子的局域磁矩越大。最后,从原子间键长来看,Li、Na、K原子与周围B原子间的距离分别为0.254 1、0.273 7、0.303 6 nm,键长越短,说明原子间轨道的波函数交叠越大,电子越多参与成键,磁性越低。因此,Li原子具有较小局域磁矩,K原子具有较大局域磁矩。
偶极矩表征物质分子中正负电荷的分布情况及运行规律,是判断物质是否存在极性及度量团簇极性大小的常用方法之一。一般说来,偶极矩的大小和对称性有密切关系,对称性越高,偶极矩越小。偶极矩μ计算公式如下。
。 | (2) |
式中,、和分别表示X、Y、Z轴方向上的偶极矩分量。由
团簇 | α/n | /n | /n | /n | /n | /n | μ/D | β |
---|---|---|---|---|---|---|---|---|
Li2B18 | 0.264 966 | 0.303 128 | 0.293 980 | 0.197 790 | 0.013 25 | 0.101 117 | 0.276 | 58.107 |
Na2B18 | 0.270 746 | 0.302 801 | 0.302 807 | 0.206 632 | 0.013 54 | 0.096 172 | 0.000 | 0.000 |
K2B18 | 0.283 148 | 0.311 243 | 0.311 248 | 0.226 954 | 0.014 16 | 0.084 291 | 0.000 | 0.000 |
Li2B | 0.365 087 | 0.400 946 | 0.264 811 | 0.429 505 | 0.018 25 | 0.193 047 | 0.000 | 0.000 |
Na2B | 0.373 852 | 0.434 198 | 0.434 215 | 0.253 144 | 0.018 69 | 0.181 063 | 0.000 | 0.000 |
K2B | 0.437 391 | 0.502 605 | 0.502 590 | 0.306 979 | 0.021 87 | 0.195 618 | 0.000 | 0.000 |
极化率表征体系对外场的响应。本节计算了各向同性平均极化率α、单个原子平均极化率和各向异性极化率Δα。
(3) |
式中:、和分别为张量对角元;N代表团簇尺寸,具体计算结果见
为了辅助全局极小结构的实验表征,基于广义的库普曼定

图 4 拟合B和M2B(M=Li, Na, K)团簇全局极小结构的光电子能谱
Fig. 4 Simulated PES of the global minimum structure of B and M2B (M=Li, Na, K) clusters
基于全局极小结构,利用Multiwfn软件,拟合出了M2B(M=Li, Na, K)团簇对应的IR谱和Raman谱(

图 5 拟合M2B(M=Li, Na, K)团簇全局极小结构的红外和拉曼光谱
Fig. 5 Simulated IR and Raman spectra of the global minimum structures of M2B (M=Li, Na, K) clusters
通过

图6 M2B(M=Li, Na, K)团簇全局极小结构中的最强特征峰对应原子的振动方向
Fig. 6 Direction of motion of the atoms in active peaks for the global minimum structures of M2B (M=Li, Na, K) clusters
为了探究M2B(M=Li, Na, K)团簇中温度对定容热容Cv和标准熵S的影响,分别计算了不同温度T(100、200、300、400、500、600、700、800 K)下的定容热容Cv和标准熵S。从
, | (4) |
。 | (5) |
式中,对应的测定系数
T/K | Cv/(J·mol· | S/(J·mol· | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Li2B18 | Na2B18 | K2B18 | Li2B | Na2B | K2B | Li2B18 | Na2B18 | K2B18 | Li2B | Na2B | K2B | |
100 | 85.34 | 89.18 | 88.47 | 92.56 | 85.97 | 94.23 | 325.44 | 282.81 | 287.07 | 307.85 | 281.86 | 292.92 |
200 | 172.58 | 175.97 | 176.17 | 187.35 | 183.48 | 189.29 | 416.26 | 376.57 | 380.71 | 406.76 | 377.28 | 393.40 |
300 | 251.18 | 254.53 | 254.71 | 264.86 | 262.75 | 267.56 | 503.35 | 466.34 | 470.56 | 505.19 | 468.97 | 488.65 |
400 | 312.40 | 313.87 | 314.01 | 323.27 | 322.16 | 324.39 | 588.32 | 550.22 | 554.48 | 588.31 | 557.11 | 575.92 |
500 | 354.32 | 355.45 | 355.57 | 362.62 | 362.10 | 363.61 | 664.37 | 626.55 | 630.84 | 666.49 | 635.10 | 654.33 |
600 | 383.34 | 384.24 | 384.34 | 389.71 | 389.50 | 390.59 | 732.93 | 695.29 | 699.60 | 736.37 | 704.92 | 724.38 |
700 | 403.72 | 404.43 | 404.53 | 408.70 | 408.64 | 409.45 | 794.67 | 757.15 | 761.48 | 798.98 | 767.51 | 787.12 |
800 | 418.34 | 418.92 | 419.01 | 422.32 | 422.33 | 422.96 | 850.46 | 813.03 | 817.37 | 855.36 | 823.90 | 843.59 |

图7 M2B(M=Li, Na, K)团簇全局极小结构的热力学参数(Cv和S)随温度变化曲线
Fig. 7 Temperature dependence of the Cv and S for the global minimum structures of M2B (M=Li, Na, K) clusters
基于第一性原理计算,系统研究了M2B(M=Li, Na, K)体系的结构、稳定性、电子、光谱和热力学性质。结构优化发现,所有掺杂体系均呈现管状构型,Li2B18(C1点群对称)中2个Li原子位居管异侧不同位置,其他结构(D9d点群对称)中2个M原子位居管两侧对称轴上。稳定性方面,K2B18和Li2B团簇在各自体系中拥有相对高的稳定性。电荷转移分析表明,电荷从碱金属原子向硼原子转移。而且,随着掺杂原子序数增大,电荷转移数增加。对于开壳层电子结构体系(1 μB的总磁矩),随着掺杂原子的原子序数增大,掺杂原子的局域磁矩增大。高对称性结构对应的偶极矩和第一超极化率为0,Li2B18团簇(较大第一超极化率)具有较强的非线性光学响应。K2B团簇(较大平均极化率和各向异性极化率)对外场的响应最强,最易受到外场的影响。光谱分析发现,体系的振动模式均为54个,主要特征峰集中在0~1 400 c
参考文献
石胜云, 温良英, 曹娇, 等. CO和Cl2在TiO2(110)表面的吸附行为[J]. 重庆大学学报, 2019, 42(8): 50-58. [百度学术]
Shi S Y, Wen L Y, Cao J, et al. Adsorption of both CO and Cl2 on TiO2(110) surface[J]. Journal of Chongqing University, 2019, 42(8): 50-58.(in Chinese) [百度学术]
柳杨璐, 刘婷婷, 潘复生. 基于第一性原理的镁合金合金相及固溶体研究进展[J]. 重庆大学学报, 2018, 41(10): 30-44. [百度学术]
Liu Y L, Liu T T, Pan F S. Research progress on intermetallic compounds and solid solutions of Mg alloys based on first-principles calculation[J]. Journal of Chongqing University, 2018, 41(10): 30-44.(in Chinese) [百度学术]
李成刚, 申梓刚, 崔颍琦, 等. V2Si(n=8~17)团簇几何结构、稳定性及特性分析[J]. 重庆大学学报, 2024, 47(5): 122-132. [百度学术]
Li C G, Shen Z G, Cui Y Q, et al. Geometric structures, stabilities and properties of V2Si(n=8~17) clusters[J]. Journal of Chongqing University, 2024, 47(5): 122-132.(in Chinese) [百度学术]
Piazza Z A, Hu H S, Li W L, et al. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets[J]. Nature Communications, 2014, 5: 3113. [百度学术]
Chen Q, Wei G F, Tian W J, et al. Quasi-planar aromatic B36 and B clusters: all-boron analogues of coronene[J]. Physical Chemistry Chemical Physics, 2014, 16(34): 18282-18287. [百度学术]
Wang L S. Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes[J]. International Reviews in Physical Chemistry, 2016, 35(1): 69-142. [百度学术]
Kiran B, Bulusu S, Zhai H J, et al. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(4): 961-964. [百度学术]
Oger E, Crawford N R M, Kelting R, et al. Boron cluster cations: transition from planar to cylindrical structures[J]. Angewandte Chemie (International Edition), 2007, 46(44): 8503-8506. [百度学术]
Duong L V, Pham H T, Tam N M, et al. A particle on a hollow cylinder: the triple ring tubular cluster B[J]. Physical Chemistry Chemical Physics, 2014, 16(36): 19470-19478. [百度学术]
Pham H T, Duong L V, Tam N M, et al. The boron conundrum: bonding in the bowl B30 and B36, fullerene B40 and triple ring B42 clusters[J]. Chemical Physics Letters, 2014, 608:295-302. [百度学术]
Zhai H J, Zhao Y F, Li W L, et al. Observation of an all-boron fullerene[J]. Nature Chemistry, 2014, 6(8): 727-731. [百度学术]
Li W L, Romanescu C, Galeev T R, et al. Transition-metal-centered nine-membered boron rings: M©B9 and M©B (M = Rh, Ir)[J]. Journal of the American Chemical Society, 2012, 134(1): 165-168. [百度学术]
Romanescu C, Galeev T R, Li W L, et al. Aromatic metal-centered monocyclic boron rings: Co©B and Ru©B[J]. Angewandte Chemie (International Edition), 2011, 50(40): 9334-9337. [百度学术]
Galeev T R, Romanescu C, Li W L, et al. Observation of the highest coordination number in planar species: decacoordinated Ta©B and Nb©B anions[J]. Angewandte Chemie International Edition, 2012, 51(9): 2101-2105. [百度学术]
Tan Pham H, Nguyen M T. Formation of the M2B teetotum boron clusters with 4d and 5d transition metals M = Rh, Pd, Ir, and Pt[J]. The Journal of Physical Chemistry A, 2019, 123(38): 8170-8178. [百度学术]
Galeev T R, Romanescu C, Li W L, et al. Valence isoelectronic substitution in the B and B molecular wheels by an Al dopant atom: umbrella-like structures of AlB and AlB[J]. Journal of Chemical Physics, 2011, 135(10): 104301. [百度学术]
Popov I A, Jian T, Lopez G V, et al. Cobalt-centred boron molecular drums with the highest coordination number in the CoB1
Ariyarathna I R. Ground and electronically excited states of main-group-metal-doped B20 double rings[J]. The Journal of Physical Chemistry A, 2022, 126(4): 506-512. [百度学术]
Celaya C A, Buendía F, Miralrio A, et al. Structures, stabilities and aromatic properties of endohedrally transition metal doped boron clusters M@B22, M = Sc and Ti: a theoretical study[J]. Physical Chemistry Chemical Physics, 2020, 22(15): 8077-8087. [百度学术]
Dong X, Jalife S, Vásquez-Espinal A, et al. Li2B24: the simplest combination for a three-ring boron tube[J]. Nanoscale, 2019, 11(5): 2143-2147. [百度学术]
Tam N M, Pham H T, Duong L V, et al. Fullerene-like boron clusters stabilized by an endohedrally doped iron atom: B(n)Fe with n = 14, 16, 18 and 20[J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3000-3003. [百度学术]
Tai T B, Tam N M, Nguyen M T. Structure of boron clusters revisited, Bn with n =14-20[J]. Chemical Physics Letters, 2012, 530: 71-76. [百度学术]
Sergeeva A P, Averkiev B B, Zhai H J, et al. All-boron analogues of aromatic hydrocarbons: B and B[J]. Journal of Chemical Physics, 2011, 134(22): 224304. [百度学术]
Li W L, Jian T, Chen X, et al. The planar CoB cluster as a motif for metallo-borophenes[J]. Angewandte Chemie (International Edition), 2016, 55(26): 7358-7363. [百度学术]
Li H R, Tian X X, Luo X M, et al. Heteroborospherene clusters Nin ∈ B40 (n = 1-4) and heteroborophene monolayers Ni2 ∈ B14 with planar heptacoordinate transition-metal centers in
Jian T, Li W L, Chen X, et al. Competition between drum and quasi-planar structures in RhB: motifs for metallo-boronanotubes and metallo-borophenes[J]. Chemical Science, 2016, 7(12): 7020-7027. [百度学术]
Li P F, Du X D, Wang J J, et al. Probing the structural evolution and stabilities of medium-sized MoB clusters[J]. The Journal of Physical Chemistry C, 2018, 122(34): 20000-20005. [百度学术]
Jin S Y, Chen B L, Kuang X Y, et al. Structural and electronic properties of medium-sized aluminum-doped boron clusters AlBn and their anions[J]. The Journal of Physical Chemistry C, 2019, 123(10): 6276-6283. [百度学术]
Tian Y H, Wei D H, Jin Y Y, et al. Exhaustive exploration of MgBn (n = 10-20) clusters and their anions[J]. Physical Chemistry Chemical Physics, 2019, 21(13): 6935-6941. [百度学术]
李成刚, 申梓刚, 田浩, 等. VB团簇几何结构及电子特性研究[J]. 分子科学学报, 2022, 38(4): 321-327. [百度学术]
Li C G, Shen Z G, Tian H, et al. Study of the geometric structure and electronic properties of VB cluster[J]. Journal of Molecular Science, 2022, 38(4): 321-327.(in Chinese) [百度学术]
Dong X, Das A, Liang W Y, et al. Stable global tubular boron clusters in Na2B18 and Na2B[J]. RSC Advances, 2019, 9(8): 4665-4670. [百度学术]
Wang Y C, Lv J, Zhu L, et al. CALYPSO: a method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10): 2063-2070. [百度学术]
Wang Y C, Miao M S, Lv J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm[J]. Journal of Chemical Physics, 2012, 137(22): 224108. [百度学术]
Li C G, Cui Y Q, Li J J, et al. Probing the structural, electronic and spectral properties of a NbB cluster[J]. Molecular Physics, 2021, 119(10):1910744. [百度学术]
Li C G, Li H J, Cui Y Q, et al. A density functional investigation on the structures, electronic, spectral and fluxional properties of VB2
Li C G, Cui Y Q, Tian H, et al. Structures, electronic and thermodynamic properties of NiB2n (n=7–11) and their anions: a theoretical study[J]. International Journal of Quantum Chemistry, 2022, 122:e26921. [百度学术]
Li C G, Cui Y Q, Tian H, et al. Quantum chemistry study on the structures and electronic properties of bimetallic Ca2-doped magnesium Ca2Mgn (n=1-15) clusters[J]. Nanomaterials, 2022, 12(10):1654. [百度学术]
Li H X, Cheng K G, Wang J C, et al. Probing the structural evolution, electronic and vibrational properties of anionic sodium-doped magnesium clusters[J]. Computational Materials Science, 2023, 226: 112212. [百度学术]
Zhao Y R, Xu Y Q, Chen P, et al. Structural and electronic properties of medium-sized beryllium doped magnesium BeMgn clusters and their anions[J]. Results in Physics, 2021, 26: 104341. [百度学术]
Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652. [百度学术]
Krishnan R, Binkley J S, Seeger R, et al. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. The Journal of Chemical Physics, 1980, 72(1): 650-654. [百度学术]
Frisch M J, Trucke G W, Schlegel H B, et al. Gaussian 09[M/CD]. Revision C.01. Wallingford CT: Gaussian Inc., 2009. [百度学术]
Neese F. The ORCA program system[J]. WIREs Computational Molecular Science, 2012, 2(1): 73-78. [百度学术]
周公度, 段连运. 结构化学基础[M]. 北京: 北京大学出版社, 2002: 1-10. [百度学术]
Zhou G D, Duan L Y. Structural chemistry basis[M]. Beijing: Peking University Press, 2002: 1-10.(in Chinese) [百度学术]
Tozer D J, Handy N C. Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities [J]. The Journal of Chemical Physics, 1998, 109(23): 10180-10189. [百度学术]
Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. [百度学术]