摘要
基于海洋深层流的特点,数值模拟了振荡来流条件下不同折减速度U*和旋转速率α对圆柱振动响应与传热特性的影响。结果表明,圆柱的x(A*peaks,x)和y方向(A*peaks,y)的振幅比存在多个极值点,且随着α增加,A*peaks,x的最大值增大,其对应的U*减小。位移和升阻力系数随着α和U*变化表现出显著差异,x方向的时间平均位移随U*的增加而增大,y方向平均位移和升阻力系数均随α的增大而增大。圆柱的运动轨迹在0≤α≤1.0时,无明显规律;在α=1.5 时,为圆环状。随着U*增加,圆柱平均努塞尔数增大,局部努塞尔数分布逐渐成圆形。随着α增大,涡旋脱落模式由2S转变为单排排列,尾迹逐渐拉伸并趋于U型模式。温度场结果表明,前驻点热交换较弱,后驻点热交换和局部传热效率显著提升。
钝体结构包括圆柱体、椭圆和矩形,在工程流体力学中,“涡致振动(vortex-induced vibration,VIV)”是钝体结构与外部流体的周期性不规则运动相互作用而引起的结构运动。VIV产生的主要原因是边界层在结构曲率变化处分离,产生旋涡流改变表面压力分布。非对称的旋涡流导致钝体两侧升力不同,引发横向运动,进而改变旋涡流的性
旋转作为一种典型的非对称手段,对揭示流体动力学与结构相互作用具有深远影响。圆柱可以经历主动和被动旋转。主动旋转受稳定/非稳定旋转速度的控制,被动旋转是由周围流动引起,也称为流致旋转(flow-induced rotation,FIR)。Bao
已有的研究主要集中在均匀来流下旋转柱体的VI
综上所述,实际应用中振荡来流条件较为常见,但针对旋转圆柱在振荡来流下的涡致振动影响的相关研究较少。因此,文中在振荡流动条件下,研究了旋转圆柱在x和y方向上的涡致振动与换热特性,分析了旋转圆柱的流体动力学特性以及尾涡温度场分布随U*和α的变化规律。
文中所采用的模型如

图1 物理模型
Fig. 1 Physical model
为了模拟实际海洋中的流体状态,采用振荡流作为来流条件。振荡流描述为
, | (1) |
式中:U为均匀来流的流速;fg为振荡频率,fg=λU/D,文中设定振荡幅值A=0.2,振荡因子λ=0.1。
文中采用N-S方程组来描述不可压缩黏性流体的流场特性。因此,对于不可压缩流体的非定常流动,其控制方程为
, | (2) |
, | (3) |
, | (4) |
式中:xi和xj分别为对应方向的直角坐标分量;u为x方向的速度;cv,ρ,p分别代表定容比热容、流体密度和压力。Cμ=0.09,湍流动能。

图2 计算区域
Fig. 2 Schematic diagram of the computational region

图3 计算网格
Fig. 3 Computational mesh
最小网格尺寸(∆h) | 前景网格+背景网格 | Ax,rms/D | Ay,rms/D | Cl_rms | Cd_mean |
---|---|---|---|---|---|
D/100 | 161 412+53 677 | 0.008 6 | 0.426 6 | 0.253 3 | 1.700 1 |
D/50 | 12 735+38 652 | 0.008 7 | 0.431 4 | 0.242 4 | 1.699 8 |
D/25 | 24 580+6 638 | 0.008 9 | 0.432 1 | 0.258 3 | 1.701 0 |
如

图4 不同U*下振动圆柱的NuA
Fig. 4 NuA of a vibrating cylinder under different U*

图5 不同α下圆柱的A*peaks,x
Fig. 5 A*peaks,x of the cylinder under different α
振荡来流条件下旋转圆柱A*peaks,y的变化如

图6 不同α下圆柱的A*peaks,y
Fig. 6 A*peaks,y of the cylinder under different α

图7 不同α下振荡流中圆柱的Xmean/D
Fig. 7 Xmean/D of a cylinder in oscillating flow with different α

图8 不同α下振荡流中圆柱的Ymean/D
Fig. 8 Ymean/D of a cylinder in oscillating flow with different α

图9 不同U*时升力系数
Fig. 9 Evolution of lift coefficient with reduced velocity

图10 不同α下圆柱的Cd_mean
Fig. 10 Cd_mean of cylinder with different α
如
由
如

图11 运动轨迹图(α=0, 0.5, 1.0)
Fig. 11 Motion trajectory (α=0, 0.5, 1.0)
由

图12 α=1.5时运动轨迹图
Fig. 12 Motion trajectory for α=1.5

图13 平均努塞尔数
Fig. 13 The average Nusselt number

图14 α=0时局部努塞尔数
Fig. 14 Local Nusselt Number for α=0

图15 α=0.5时局部努塞尔数
Fig. 15 Local Nusselt Number for α=0.5

图16 α=1.0时局部努塞尔数
Fig. 16 Local Nusselt Number for α=1.0

图17 α=1.5时局部努塞尔数
Fig. 17 Local Nusselt Number for α=1.5
旋转圆柱的NuL分布如

图18 低α下的流场和温度场分布
Fig. 18 Distribution of flow field and temperature field at low α
由

图19 高α下的流场和温度场分布
Fig. 19 Distribution of flow field and temperature field at high α
在振荡来流条件下,综合分析了不同α和U*旋转圆柱在x和y方向的流体动力学特性及热交换特性,得到以下结论。
1)振荡来流下,旋转圆柱A*paeks,x随着U*变化表现出多个极大值点,增加旋转速率最大值逐渐减小,α=1.5时达到0.89。旋转效应增强了圆柱的横向振动,A*paeks,y也呈现多个极值,随着U*增大,U*=7时,较高α的圆柱达到最大值,而低α圆柱则分别在U*=10(α =0)和U*=9(α =0.5)时才达到极值。
2)旋转圆柱的位移和气动系数随α和U*的变化表现出显著差异。Xmean/D随着U*增大而增加,而Ymean/D则受马格努斯效应影响,随α增大而增大。此外,σCl与U*密切相关,而Cl_mean和Cd_mean随旋转速率的增加而增大,旋转速率对气动阻力有显著调节作用。
3)圆柱的运动轨迹在不同α和U*下,差异显著。低旋转速率时轨迹较复杂,呈“8”字形或闭环圆形。随着U*增大,轨迹逐渐变大并趋于紧凑,特别是当α=1.5时,运动轨迹为单一圆环状,且随U*变化与振幅响应趋势一致。
4)高α和U*能够显著提升换热性能。旋转圆柱的NuL分布在不同α下差异明显,随着U*增大,旋转速率提高导致NuL分布趋于有序且集中,换热效果在高U*和α下表现更优。
5)在低旋转速率(α=0、0.5),U*=4时,涡旋脱落呈“2S”模式,随着旋转速率增大,涡旋排列间隔减小,且涡旋脱落由两排过渡为单排。温度场分析显示,后驻点区域的热交换增强,剪切层分离提高局部传热效率。随着U*增大,尾迹逐渐拉伸,并趋向“U”型,热传递效果进一步增强。
参考文献
Sahoo P, Domala V, Sharma R. Vortex induced vibrations and motions-review, issues and challenges [J]. Ocean Systems Engineering, 2022, 12(3): 301-33. [百度学术]
Ma L X, Resvanis T L, Vandiver J K. The influence of mode dominance and traveling waves on flexible cylinder flow-induced vibration[J]. Ocean Engineering, 2022, 264: 111750. [百度学术]
Wang J L, Geng L F, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations[J]. Applied Energy, 2020, 267: 114902. [百度学术]
Zou Q F, Ding L, Wang H B, et al. Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder[J]. Ocean Engineering, 2019, 191: 106505. [百度学术]
Wang J L, Tang L H, Zhao L Y, et al. Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies[J]. Energy, 2019, 172: 1066-1078. [百度学术]
Hu G, Wang J L, Su Z, et al. Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference[J]. Applied Physics Letters, 2019, 115(7): 073901. [百度学术]
Williamson C H K, Govardhan R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7): 713-735. [百度学术]
Yang Z M, Ding L, Zhang L, et al. Two degrees of freedom flow-induced vibration and heat transfer of an isothermal cylinder[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119766. [百度学术]
Ding L, Han Y X, Yang Z M, et al. Influence of upstream cylinder on flow-induced vibration and heat transfer of downstream cylinder[J]. International Journal of Thermal Sciences, 2022, 176: 107519. [百度学术]
Ali U, Islam M, Janajreh I. Heat transfer and wake-induced vibrations of heated tandem cylinders with two degrees of freedom: Effect of spacing ratio [J]. Phys Fluids, 2022, 34(11): 113612. [百度学术]
Khan H H, Islam M, Fatt Y Y, et al. Effect of three tandem cylinder diameter difference on flow-induced vibrations and heat transfer[J]. International Journal of Mechanical Sciences, 2022, 236: 107764. [百度学术]
Bao Y X, Lin Y S, Chen W, et al. Numerical investigation of wake and flow-induced vibrations of a rotating cylinder in flow[J]. Ocean Engineering, 2022, 262: 112207. [百度学术]
Li R, Gong J, Chen W, et al. Numerical investigation of vortex-induced vibrations of a rotating cylinder near a plane wall[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1202. [百度学术]
Chen W, Du A Y, Lin Y S, et al. Investigation of vortex-induced vibrations of rotating cylinders with different surface roughnesses[J]. Physics of Fluids, 2024, 36(4): 043614. [百度学术]
Liu X W, Hu C J, Liu D P, et al. Vibration characteristic of free-to-rotate elliptical cylinder at low Reynolds number[J]. Ocean Engineering, 2024, 293: 116576. [百度学术]
Farouk B, Ball K S. Convective flows around a rotating isothermal cylinder[J]. International Journal of Heat and Mass Transfer, 1985, 28(10): 1921-1935. [百度学术]
Ma H T, Xia W J, Zhou W Y, et al. Experimental investigation on the steady, external laminar mixed convection heat transfer characteristics around a large diameter horizontal rotating cylinder[J]. International Communications in Heat and Mass Transfer, 2014, 57: 239-246. [百度学术]
Ma H T, Lu W Q, Zhou W Y, et al. Effects of rotation on the trailing vortex and heat transfer from a horizontal rotating cylinder at higher Grashof number[J]. International Communications in Heat and Mass Transfer, 2015, 68: 20-26. [百度学术]
Borazjani I, Sotiropoulos F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region[J]. Journal of Fluid Mechanics, 2009, 621: 321-364. [百度学术]
Papaioannou G V, Yue D K P, Triantafyllou M S, et al. On the effect of spacing on the vortex-induced vibrations of two tandem cylinders[J]. Journal of Fluids and Structures, 2008, 24(6): 833-854. [百度学术]
Zhao M, Cheng L. Numerical simulation of vortex-induced vibration of four circular cylinders in a square configuration[J]. Journal of Fluids and Structures, 2012, 31: 125-140. [百度学术]
Lai W C, Zhou Y, So R M C, et al. Interference between stationary and vibrating cylinder wakes[J]. Physics of Fluids, 2003, 15(6): 1687-1695. [百度学术]
Rehman U U, Munir A, Khan N B, et al. Numerical investigation of vortex-induced vibrations (VIV) of a rotating cylinder in in-line and cross-flow directions subjected to oscillatory flow[J]. Ocean Engineering, 2024, 304: 117917. [百度学术]
Sahu T R, Navrose, Mittal S. Multiple regimes of lock-in and hysteresis in free vibration of a rotating cylinder[J]. Physics of Fluids, 2023, 35(12): 123606. [百度学术]
孙悦. 旋转恒温圆柱涡致振动响应及其换热特性研究[D]. 重庆: 重庆大学, 2023. [百度学术]
Sun Y. Study on vortex-induced vibration response and heat transfer characteristics of rotating constant temperature cylinder[D]. Chongqing: Chongqing University, 2023. (in Chinese) [百度学术]
Izadpanah E, Amini Y, Ashouri A. A comprehensive investigation of vortex induced vibration effects on the heat transfer from a circular cylinder[J]. International Journal of Thermal Sciences, 2018, 125: 405-418. [百度学术]
Seifert J. A review of the Magnus effect in aeronautics[J]. Progress in Aerospace Sciences, 2012, 55: 17-45. [百度学术]
Munir A, Zhao M, Wu H, et al. Three-dimensional numerical investigation of vortex-induced vibration of a rotating circular cylinder in uniform flow[J]. Physics of Fluids, 2018, 30(5): 053602. [百度学术]