摘要:
为了提高全尾砂料浆的脱水浓缩效果,将磁化处理技术引入到全尾砂料浆脱水浓缩中,并建立GA-SVM模型优选全尾砂料浆的沉降参数。建立支持向量机(SVM)沉降参数优化模型,以磁感应强度、磁化处理时间、料浆流速、料浆浓度、絮凝剂单耗为输入因子,沉降速度为综合输出因子,通过正交试验建立样本数据对SVM模型进行训练与检验,采用遗传算法(GA)对SVM模型参数进行优化,进而得到磁化全尾砂料浆沉降参数的GA-SVM优化模型。将GA-SVM模型运用到某铁矿磁化全尾砂料浆沉降参数优化中,得到的最佳沉降参数为磁感应强度0.192 T、磁化处理时间1.85 min、料浆速度1.92 m/s、PAC单耗28 g/t,沉降速度可达约155 cm/h。研究表明:适宜的磁化处理条件可提高全尾砂料浆的脱水浓缩效果,节约30.0%~42.5% PAC用量,GA-SVM模型对全尾砂料浆沉降参数预测结果相对误差在5%以内、预测精度高,为全尾砂料浆脱水浓缩及其参数优选提供了一种新思路。