摘要:
随着云计算等新型服务计算的兴起,Web服务数量日益增长,相同或相似功能的Web服务也逐渐增多。为了向用户推荐更高质量的服务,精确地预测Web服务的QoS值成为亟待解决的重要问题。传统的协同过滤方法已经被广泛应用于QoS预测和Web服务推荐中,但因为数据稀疏和噪声问题导致QoS预测性能不好。为提高QoS预测的性能,文中通过分析用户服务QoS矩阵的时空特征,提出了一种基于全局和局部结构相似度的稀疏矩阵分解模型。该方法将QoS矩阵的相邻时间相似用户的网络环境相似性这一特征融入到矩阵分解中,并利用分解的因子对QoS矩阵进行低秩填充。这种方式在一定程度上消除了数据稀疏和噪声的影响。在真实Web服务调用数据集上进行实验,结果表明,该方法在预测精度上优于典型的协同过滤算法(相比于NMF,其MAE值最大下降了3.25%,RMSE值最大下降了6.65%;相比于SVD,其MAE值最大下降了3.67%,RMSE值最大下降了7.01%),能够有效地解决数据稀疏和噪声的问题。