摘要:
随着全球化石燃料短缺日益严重,可再生能源的开发与利用愈发得到重视。风能是被广泛使用的清洁能源之一,在生产工作中,风力发电作为风能的主要利用形式,需要对其功率进行预测。依托风场日常记录的历史数据,传统学习模型可对风功率进行短期预测,但往往仅使用自己域内的历史数据作为分析对象,该类算法导致结果片面,局限性大,不能有效使用类数据中的隐含联系,抑制原始数据缺失或异常值引起的模型性能下降问题。笔者设计一种基于历史数据深度迁移的短期风功率预测模型。首先,使用带降噪处理的自动编码机构建深度神经网络模型。其次,应用深度迁移方法共享隐藏层,挖掘特征之间的隐含联系。最后,从具有相似特征和地理位置的风场数据中迁移重要知识,提高模型准确率和可靠性。实验结果表明,研究方法较之未使用迁移的方法更充分利用现有数据,预测准确率显著提高。