2018, 41(1):99-107.DOI: 10.11835/j.issn.1000-582X.2018.01.011
摘要:针对电机轴承故障问题,提出一种基于支持向量机(SVM,support vector machine)与粒子群优化(PSO,particle swarm optimization)相结合的电机轴承故障诊断方法。结合振动信号的时域与小波包能量特征,使表征振动信号的特征具有较好的可靠性和敏感性,提高了故障的诊断准确率。采用PSO算法对SVM的惩罚参数和径向基核函数参数进行寻优,并与其它参数寻优算法进行比较分析。实验表明,研究提出的轴承故障诊断方法不仅对电机轴承的外圈故障、内圈故障和滚珠故障有很好的识别效果,而且还对每一类故障的严重程度有较好的区分,具有较强的实用性。
2014, 37(7):136-146.DOI: 10.11835/j.issn.1000-582X.2014.07.019
摘要:针对模拟电路的故障诊断,提出一种采用小波包分析和能量计算作为故障特征预处理的Hopfield神经网故障诊断方法。在新方法中,模拟电路在理想和实际故障情形下的输出响应分别通过SPICE仿真及电路终端的数据采集板所采集;故障电路输出响应通过小波包完整分解,各尺度小波系数的能量值由一个新定义的能量函数进行计算;由小波能量值所构成的理想与实测故障特征向量经能量编码后被分别作为联想记忆的记忆原型与记忆起始点,在自联想记忆驱动下,实测模拟电路故障的编码被Hopfield神经网络准确分类。数值实验结果表明新方法对具有微