期刊信息
主管单位:国家教育部
主办单位:重庆大学
主  编:
地  址:重庆市沙坪坝正街174号
邮政编码:400030
电  话:023-65102302
电子邮件:xbsg@cqu.edu.cn
国际标准刊号:ISSN 1000-582X
国内统一刊号:CN 50-1044/N
邮发代号:国内78-16 国外 M355
引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ EndNote   BibTeX  过刊浏览    高级检索
本文已被:浏览 31次   下载 12 本文二维码信息
码上扫一扫!
分享到: 微信 更多
ACPSO-BP神经网络在矿井突水水源判别中的应用
徐星1, 李垣志2, 田坤云1, 张瑞林1
1.河南工程学院 安全工程学院, 郑州 451191;2.河南理工大学 安全科学与工程学院, 河南 焦作 454000
摘要:
矿井多年来的连续开采使各含水层水质特征变得更加复杂、更为接近,应用经典数学方法难以建立精确的判别模型,使用具有非线性映射功能的BP神经网络可以克服以上问题,但其仍然具有易陷入局部最优和收敛速度慢缺点。通过将"早熟"判断机制、Tent混沌映射以及权重自适应调整策略引入粒子群算法中,建立基于自适应混沌粒子群算法和BP(ACPSO-BP)神经网络突水水源判别模型,应用结果表明:与BP神经网络模型、基于标准粒子群算法和BP(SPSO-BP)神经网络模型相比,ACPSO-BP神经网络模型具有收敛速度快、精度高和泛化能力强的特点。
关键词:  突水水源  BP神经网络  SPSO算法  自适应变异  Tent混沌映射
DOI:10.11835/j.issn.1000-582X.2018.06.011
分类号:
基金项目:国家自然科学基金资助项目(51604091,51474094);河南省科技攻关计划项目(182102310743);河南省高等学校重点科研项目(18A440010)。
Application of ACPSO-BP neural network in discriminating mine water inrush source
XU Xing1, LI Yuanzhi2, TIAN Kunyun1, ZHANG Ruilin1
1.School of Safety Engineering, Henan University of Engineering, Zhengzhou 451191, P. R. China;2.School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, P. R. China
Abstract:
The continuous mining in the coal mine has made the water quality characteristics of each aquifer become more complex and more similar, and it is difficult to establish a precise discriminating model by using classical mathematical methods. The BP neural network with nonlinear mapping function can overcome the above problems, but it still has the disadvantage of being easy to fall into local optimization and having slow convergence speed. We introduced the "premature" judgment mechanism, Tent chaos map and adaptive weight adjusting strategy into particle swarm optimization algorithm, establishing a water inrush discrimination model on the basis of adaptive chaos particle swarm optimization algorithm and BP(ACPSO-BP) neural network. The application results show that compared with the BP neural network model and the model based on standard particle swarm algorithm and BP(SPSO-BP) neural network, the ACPSO-BP neural network model has faster convergence speed, higher accuracy and stronger generalization.
Key words:  inrush water source  BP neural network  standard particle swarm optimization algorithm  adaptive mutation  Tent chaotic map
Copyright@ 2008 All Rights Reserved.