基于失配补偿Smith-RBF神经网络的主蒸汽压力控制技术
作者:
中图分类号:

TP273

基金项目:

安徽省重点研究与开发计划项目(1804a09020094);安徽省高校自然科学研究重点项目(KJ2018A0054,KJ2018A0060)。


Main steam pressure control technique based on mismatch compensation Smith predictor and RBF neural network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对燃气发电锅炉主蒸汽压力控制系统对象的大滞后、不确定性和煤气扰动大的特点,设计了一种基于失配补偿Smith预估及RBF神经网络的控制方案。利用RBF神经网络的在线学习能力整定常规PID的参数,并通过失配补偿Smith预估控制器对系统中存在的纯滞后进行补偿,有效解决了火力发电锅炉主蒸汽压力对象动态特性模型失配及纯滞后的问题。通过仿真研究及实际应用表明:该控制方法对于火力发电锅炉主蒸汽压力控制具有很好的稳定性和抗干扰能力。

    Abstract:

    To solve the problems of large lag, uncertainty and gas disturbance of main steam pressure control system object of gas-fired power boiler,a control scheme based on mismatch compensation Smith prediction and RBF neural network is designed. The RBF neural network's online learning ability is used to adjust the parameters of the conventional PID, and the mismatch compensation Smith prediction controller to compensate the pure hysteresis in the system.The improved algorithm effectively solves the problem of mismatch of dynamic characteristic model and pure lag of main steam pressure object in thermal power boiler. The simulation research and practical application show that the control method has good stability and anti-interference ability for the main steam pressure control of thermal power boilers.

    参考文献
    [1] 沈霞,张丽香,王晓伟.基于TDOF MD PID的循环流化床锅炉主蒸汽压力控制系统研究[J].热力发电,2014(5):94-97.SHEN Xia, ZHANG Lixiang, WANG Xiaowei. TDOF MD PID based main steam pressure control system in circulating fluidized bed boilers[J]. Thermal Power Generation, 2014(5):94-97. (in Chinese)
    [2] Sivakumar L, Jims S H, Dharmalingam S. An investigation on the efficacy of classical tuning algorithm to satisfy advanced requirements:control of main steam pressure during fuel switching and load disturbances in coal fired boilers[J]. Ifac Papersonline, 2016, 49(1):443-449.
    [3] 李俊利,杨绍武,袁平,等.基于动态矩阵控制的燃煤锅炉蒸汽压力控制[J].控制工程,2016,23(11):1685-1689.LI Junli, YANG Shaowu, YUAN Ping, et al. Steam pressure control of coal fired boiler based on dynamic matrix control[J]. Control Engineering of China, 2016, 23(11):1685-1689. (in Chinese)
    [4] 王宝忠,宋冬锋,刘卫法.基于Smith预估补偿与RBF神经网络的改进PID控制[J].现代电子技术,2011,34(5):153-157.WANG Baozhong, SONG Dongfeng, LIU Weifa. Improved PID control based on smith predictive compensation and RBF neural network[J]. Modern Electronics Technique, 2011, 34(5):153-157. (in Chinese)
    [5] 韩立强,李志宏.一种改进结构的Smith预估器及在轧机AGC中的应用[J].河北大学学报(自然科学版),2004,24(2):130-134.HAN Liqiang, LI Zhihong. A improved smith predictor and its application for AGC in the roll[J]. Journal of Hebei University, 2004, 24(2):130-134. (in Chinese)
    [6] 刘长良,马增辉.Smith预估模型参数仿真分析及多目标优化[J].系统仿真学报,2014,26(8):1706-1712.LIU Changliang, MA Zenghui. Simulation analysis and multi-objective optimization of smith-predictor parameters tuning[J]. Journal of System Simulation, 2014, 26(8):1706-1712. (in Chinese)
    [7] 张晓宇,付林,沈炯,等.基于在线支持向量机的锅炉动态建模方法研究[J].中国电机工程学报,2017,37(增1):123-128.ZHANG Xiaoyu, FU Lin, SHEN Jiong, et al. Study on dynamic modeling method of boiler based on on-line support vector machine[J]. Proceedings of the Csee, 2017, 37(S1):123-128.
    [8] Ma J, Eason J P, Dowling A W, et al. Development of a first-principles hybrid boiler model for oxy-combustion power generation system[J]. International Journal of Greenhouse Gas Control, 2016, 46:136-157.
    [9] Sampath R, Dhami S S, Srivastava S. A virtual model of steam turbine power generation unit[J]. International Journal of Performability Engineering, 2016, 46:136-157.
    [10] 刘长良,马增辉.过热汽温系统的Smith预估器参数多目标优化控制[J].模式识别与人工智能,2015,28(3):282-288.LIU Changliang, MA Zenghui. Multi-objective optimization control of smith-predictor parameters in superheated steam temperature system[J]. Pattern Recognition and Artificial Intelligence, 2015, 28(3):282-288. (in Chinese)
    [11] Mai N T, Yamada K. A design method for stabilizing modified smith predictor for multiple-input/multiple-output non-minimum phase time-delay plants with multiple time-delays[J]. Icic Express Letters, 2014, 8(3):915-920.
    [12] 汪秉文,李国宽,姜新.一种改进的Smith预估补偿方法[J].华中理工大学学报,1999(12):33-35.WANG Bingwen, LI Guokuan, JIANG Xin. An improved smith predictor control method[J]. Journal of Huazhong University Ofence & Technology, 1999(12):33-35. (in Chinese)
    [13] Qiao J, Meng X, Li W. An incremental neuronal-activity-based rbf neural network for nonlinear system modeling[J]. Neurocomputing, 2018, 302(8):1-11.
    [14] Wang X W. Path planning and tracking for vehicle parallel parking based on preview BP neural network PID controller[J]. Transactions of Tianjin University, 2015, 21(3):199-208.
    [15] Zhu H, Shen J, Su Z. RBF neural network regression model based on fuzzy observations[J]. Journal of Southeast University (English Edition), 2013, 29(4):400-406.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高锦,章家岩,冯旭刚,姚凤麒.基于失配补偿Smith-RBF神经网络的主蒸汽压力控制技术[J].重庆大学学报,2019,42(7):105-113.

复制
分享
文章指标
  • 点击次数:599
  • 下载次数: 880
  • HTML阅读次数: 712
  • 引用次数: 0
历史
  • 收稿日期:2018-07-29
  • 在线发布日期: 2019-07-27
文章二维码