24 GHz高增益超材料覆层型微带天线的拓扑优化设计
作者:
中图分类号:

O224

基金项目:

国家自然科学基金青年科学基金(11502075);汽车零部件技术湖北省协同创新项目(2015XTZX0401);湖北汽车工业学院博士科研启动基金(BK201501)。


Topology optimization design of microstrip antenna with metamaterial cover for high-gain at 24 GHz
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种基于遗传算法的高增益超材料覆层型微带天线拓扑优化设计方法,设计中对超材料基元和辐射基元采用整体考量的方法,选取微带天线的最大增益值为目标函数,选取超材料覆铜区域离散化后方格子铜贴片的二进制0-1编码为优化变量,建立了24 GHz超材料覆层型微带天线的拓扑优化模型。并采用贴片方格子的冗余设计方法来消除拓扑优化中的单点连接,进而通过合适的遗传算法求解策略对10×10方格子规模的优化设计问题进行求解,获得了一种不含单点连接的新型超材料覆层型微带天线。结果表明,与普通微带天线相比,创新构型的超材料覆层型微带天线具有更佳的工作频率匹配性能,微带天线的增益性能和方向性得到明显提升,其最大增益性能从7.51 dB提升到11.54 dB,提升了53.66%。最后对比研究了12×12和14×14等两种不同方格子规模的超材料微带天线拓扑优化设计问题,结果显示得到的创新构型优化设计结果是趋于收敛的,考虑到制备性价比,10×10方格子规模下的创新构型是制备最佳选择。

    Abstract:

    In this paper, a topology optimization design method is proposed for high gain metamaterial cladding microstrip antenna based on genetic algorithm. Adopting a holistic approach to metamaterial elements and the maximum gain value of the microstrip antenna is selected as the objective function. The binary 0-1 coding of the lattice copper patch behind the discretization of the metamaterial copper-clad area is selected as the optimization variable. The topology optimization model of metamaterial microstrip antenna at 24 GHz is established. The redundant design method of patch square grid is used to eliminate the point connection phenomenon and a suitable genetic algorithm strategy is adopted to solve the optimal design problem of 10×10 square lattice size, thus obtaining a new metamaterial microstrip antenna without point connection. The results show that metamaterial cladding microstrip antenna has better matching performance compared with the conventional microstrip antenna, and its gain performance and directivity are significantly improved. Thereinto, the maximum gain performance is raised from 7.51 dB to 11.54 dB, and the improvement rate is 53.66%. Finally, the topological optimization design of metamaterial microstrip antennas with different square lattice sizes such as 12×12 and 14×14 is studied. The results show that the creative configuration design of the metamaterial microstrip antenna is convergent, and the microstructure configuration for 10×10 lattice size is the most cost-effective.

    参考文献
    [1] Liu Y H, Zhao X P. Investigation of anisotropic negative permeability medium cover for patch antenna[J]. IET Microwaves, Antennas & Propagation, 2008, 2(7):737-744.
    [2] 韩庆文, 邓松, 王韬. 单点背馈圆极化微带天线的设计与实现[J].重庆大学学报, 2008, 31(1):48-51.HAN Qingwen, DENG Song, WANG Tao. Design and realization of single back-feed circular polarization micro-strip antenna[J]. Journal of Chongqing University, 2008, 31(1):48-51. (in Chinese)
    [3] 兰俊祥, 曹祥玉, 高军, 等. 一种新型的低散射微带天线阵设计[J]. 物理学报,2019,68(3):154-163.LAN Junxiang, CAO Xiangyu, GAO Jun, et al. Novel design of microstrip antenna array with low scattering performance[J]. Acta Physica Sinica, 2019, 68(3):154-163. (in Chinese)
    [4] Garcia-Vigueras M, Gomez-Tornero J L, Goussetis G, et al. Efficient synthesis of 1-D Fabry-Perot antennas with low sidelobe levels[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11:869-872.
    [5] Xu H X, Wang G M, Cai T, et al. Miniaturization of 3-D anistropic zero-refractive-index metamaterials with application to directive emissions[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6):3141-3149.
    [6] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic meso structures[J]. Physical Review Letters, 1996, 76:4773-4776.
    [7] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11):2075-2084.
    [8] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
    [9] 保石, 罗春荣, 赵晓鹏. S波段超材料完全吸收基板微带天线[J]. 物理学报, 2011, 60(1):206-211.BAO Shi, LUO Chunrong, ZHAO Xiaopeng. S-wave band microstrip antenna with perfect absorbing metamaterial substrate[J]. Aata Physica Sinica, 2011, 60(1):206-211. (in Chinese)
    [10] 刘敏, 张斌珍, 段俊萍. 一种基于超材料的宽频带定向性微带天线[J].机械工程学报, 2018, 54(9):64-68.LIU Min, ZHANG Binzheng, DUAN Junping. Broadband and directional microstrip antenna based on metamaterials[J]. Journal of Mechanical Engineering, 2018, 54(9):64-68. (in Chinese)
    [11] 刘涛, 曹祥玉, 高军, 等. 基于超材料的宽带高增益低雷达散射截面天线[J].电波科学学报,2012,27(3):526-531.LIU Tao, CAO Xiangyu, GAO Jun, et al. Broadband high gain and low RCS metamaterial patch antenna[J]. Chinese Journal of Radio Science, 2012, 27(3):526-531. (in Chinese)
    [12] 董焱章, 刘书田. 考虑超材料胞元间电磁耦合影响的五层模型[J]. 计算力学学报,2017,34(3):297-302.DONG Yanzhang, LIU Shutian. Five-layer model considering the electromagnetic coupling effects of metamaterial unit cells[J]. Chinese Journal of Computational Mechanics, 2017, 34(3):297-302. (in Chinese)
    [13] 赵晓鹏, 刘亚红. 微波超材料与超材料中波的行为[M]. 北京:科学出版社,2016:423-464.ZHAO Xiaopeng, LIU Yahong. Microwave metamaterials and wave behavior in metamaterials[M]. Beijing:Science Press, 2016:423-464. (in Chinese)
    [14] 张晨, 曹祥玉, 高军, 等. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线[J].物理学报,2016(13):138-146.ZHANG Chen, CAO Xiangyu, GAO Jun, et al?栠楄湥敳獩敧??扯牦?孡㈠?嵲??慤晢慡牮楤?????潨畩獧獨愭癧楡慩湮?????桥慤氭敡獰桥瑲慴牵楲????????佐灥瑲楯浴甠浲?摳敯獮楡杴湯?漠晭?灧敮牥晴潯爭慥瑬敥摣?潲物瑣栠潭瑩牣潲灯楳捴?慩湰搠?汮慴浥楮湮慡瑛敊摝?挠潁浣灴潡猠楐瑨敹?灩汣慡琠敓獩?畩湣摡攬爠′椰渱?瀨氱愳温攺?氳漸愭搱椴渶朮?戨祩?朠敃湨敩瑮楥捳?愩氼杢潲爾楛琱栵浝嬠?嵯??匠瑙爬甠捌瑩畵爠慓氮?慔湯摰??畯汧瑹椠摯楰獴捩業灩決楡湴慩牯祮?佯灦琠楰浡楴穣慨琭楴潹湰??㈠ぬ???????????????????扲物?孬㈠?嵯?婦慩湧摵慲癡楴?卯????偯潲甠牴瑲慡歮摳潭畩獳瑳?卯?????畦汯瑲業摡楮獣捥椠灷汩楴湨慩牮礠?摨敥猠楲条湤?潯映?慲?東畵楥摮散摹?晢污祮楤渠杢?癳敥桤椠捯汮攠?畨獥椠湧来?獥楴浩灣氠敡硬?湯潲湩摴潨浭楛湊慝琮攠摊?獵潲牮瑡楬渠杯?朠敏湰整瑩楣捳?愠氲朰漱爲椬琠栱洴???嬩?崱?‵匱琰爱甮挼瑢畲爾慛氱?慝渠摓??甠汐琬椠摇楡獯挠楒瀬氠楌湩慵爠祓?传灔瑯楰浯楬穯慧瑹椠潯湰???ど???????????つ???㈠ね?thods and the realization programs for designing microstructures of patched metamaterials with prescribed electromagnetic properties[J]. Electronic Materials Letters, 2016, 12(5):660-672.
    [17] Jog C S, Haber R B. Stability of finite element models for distributed-parameter optimization and topology design[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 130(3/4):203-226.
    [18] Olhoff N, Bendsøe M P, Rasmussen J. On CAD-integrated structural topology and design optimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89:259-279.
    [19] Bendsoe M P, Díaz A R, Lipton R, et al. Optimal design of material properties and material distribution for multiple loading conditions[J]. International Journal for Numerical Methods in Engineering, 1995, 38(7):1149-1170.
    [20] Sigmund O, Petersson J. Numerical instabilities in topology optimization:a survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural and Multidisciplinary Optimization, 1998, 16(1):68-75.
    [21] 郭旭, 赵康. 基于拓扑描述函数的连续体结构拓扑优化方法[J].力学学报,2004,36(5):520-526.GUO Xu, ZHAO Kang. A new topology description function based approach for stuctural topology optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(5):520-526. (in Chinese)
    [22] 史鹏飞. 特定性能电磁超材料微结构及其功能器件优化设计[D]. 大连:大连理工大学, 2017.SHI Pengfei. Optimization design of microctructure of electromagnetic matarials with prescribed properties and optimization of metamaterial-based functions devices[D]. Dalian:Dalian University of Technology, 2017. (in
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董焱章,周精浩.24 GHz高增益超材料覆层型微带天线的拓扑优化设计[J].重庆大学学报,2020,43(6):50-57.

复制
分享
文章指标
  • 点击次数:1040
  • 下载次数: 1128
  • HTML阅读次数: 757
  • 引用次数: 0
历史
  • 收稿日期:2020-01-10
  • 在线发布日期: 2020-06-06
文章二维码