改进深度可分离卷积的SSD车型识别
作者:
中图分类号:

TP391

基金项目:

山西省重点研发(高新领域)项目资助(201903D121132)。


Vehicle type recognition based on improved depthwise separable convolution SSD
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对现有车辆识别方法对于车型实时识别能力不足的问题,提出一种改进的深度可分离卷积的SSD(single shot multibox detector)算法用于车型识别研究。首先,利用深度可分离卷积网络进行特征提取,并引入反残差模块来解决因通道数少、特征压缩导致的准确率下降问题。其次,以车辆的刚体特性为依据,重新设计区域候选框,减少模型参数运算量。最后,在BIT-Vehicle数据集上进行消融实验来对比不同网络模型性能差异。结果表明:改进的深度可分离卷积的SSD车型识别方法有更好的车型识别效果,可以达到96.12%的识别精度,检测速度提高至0.078 s/帧。

    Abstract:

    Aiming at the problem of insufficient real-time recognition capabilities of existing vehicle recognition methods, a single shot multibox detector(SSD) algorithm based on improved depthwise separable convolution is proposed for vehicle type recognition. Firstly, this paper proposes to extract the features using depthwise separable convolution network, and introduces the inverted residuals module to solve the problem of reduced accuracy due to the small number of channels and feature compression. Secondly, based on the rigid body characteristics of the vehicles, the region candidate frame is redesigned to reduce the amount of model parameter calculation. Finally, ablation experiments are performed on the BIT-Vehicle dataset to compare the performance differences of different network models. The results show that the improved depthwise separable convolution SSD vehicle type recognition method can achieve a recognition accuracy of 96.12%, and the detection speed increases to 0.078 s/frame.

    参考文献
    [1] 朱立峰, 赫连浩博. 电子不停车收费(ETC)专利技术综述[J]. 中国发明与专利, 2019, 16(S2):95-99.Zhu L F, Helian H B. Patent survey on electronic toll collection(ETC) technologies[J]. China Invention & Patent, 2019, 16(S2):95-99. (in Chinese)
    [2] 刘操, 郑宏, 黎曦, 等. 基于多通道融合HOG特征的全天候运动车辆检测方法[J]. 武汉大学学报·信息科学版, 2015, 40(8):1048-1053.Liu C, Zheng H, Li X, et al. A method of moving vehicle detection in all-weather based on melted multi-channel HOG feature[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8):1048-1053. (in Chinese)
    [3] Miglani A, Kumar N. Deep learning models for traffic flow prediction in autonomous vehicles:a review, solutions, and challenges[J]. Vehicular Communications, 2019, 20:100184.
    [4] 余成波, 田桐, 熊递恩, 等. 中心损失与Softmax损失联合监督下的人脸识别[J]. 重庆大学学报, 2018, 41(5):92-100.Yu C B, Tian T, Xiong D E, et al. Joint supervision of center loss and softmax loss for face recognition[J]. Journal of Chongqing University, 2018, 41(5):92-100. (in Chinese)
    [5] Ren S Q, He K M, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE:1137-1149.
    [6] Redmon J, Divvala S, Girshick R, et al. You only look once:unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016:779-788.
    [7] Liu W, Anguelov D, Erhan D, et al. SSD:single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham:Springer International Publishing, 2016:21-37.
    [8] 桑军, 郭沛, 项志立, 等. Faster-RCNN的车型识别分析[J]. 重庆大学学报, 2017, 40(7):32-36.Sang J, Guo P, Xiang Z L, et al. Vehicle detection based on faster-RCNN[J]. Journal of Chongqing University, 2017, 40(7):32-36. (in Chinese)
    [9] 陈立潮, 卜楠, 潘理虎, 等. 基于改进卷积神经网络的车型识别[J]. 计算机工程与设计, 2019, 40(11):3331-3336,3348.Chen L C, Bu N, Pan L H, et al. Vehicle identification based on improved convolutional neural network[J]. Computer Engineering and Design, 2019, 40(11):3331-3336,3348. (in Chinese)
    [10] 吴天舒, 张志佳, 刘云鹏, 等. 基于改进SSD的轻量化小目标检测算法[J]. 红外与激光工程, 2018, 47(7):0703005.Wu T S, Zhang Z J, Liu Y P, et al. A lightweight small object detection algorithm based on improved SSD[J]. Infrared and Laser Engineering, 2018, 47(7):0703005. (in Chinese)
    [11] Howard A G, Zhu M L, Chen B, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2020-02-12]. https://arxiv.org/abs/1704.04861.
    [12] Sandler M, Howard A, Zhu M L, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018:4510-4520.
    [13] Dong Z, Wu Y W, Pei M T, et al. Vehicle type classification using a semisupervised convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):2247-2256.
    [14] Dong Z, Pei M T, He Y, et al. Vehicle type classification using unsupervised convolutional neural network[C]//201422nd International Conference on Pattern Recognition, August 24-28, 2014, Stockholm, Sweden. IEEE,2014:172-177.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭融,王芳,刘伟.改进深度可分离卷积的SSD车型识别[J].重庆大学学报,2021,44(6):43-48,83.

复制
分享
文章指标
  • 点击次数:697
  • 下载次数: 1443
  • HTML阅读次数: 1254
  • 引用次数: 0
历史
  • 收稿日期:2020-03-04
  • 在线发布日期: 2021-06-10
文章二维码