自然条件下输电线路导线覆冰增长特性
作者:
中图分类号:

TM85

基金项目:

国家自然科学基金重点项目(51637002)。


Characteristics of icing on transmission lines under natural conditions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    输电线路导线覆冰严重威胁着电网安全运行。导线覆冰过程复杂,影响因素众多,对其覆冰增长规律的准确掌握是建立并优化导线覆冰数值计算模型的基础。从自然覆冰试验出发,依托雪峰山自然覆冰试验基地对不同种类的导线进行了自然覆冰观测试验,研究了导线直径、导线表面处理情况、覆冰类型及导线扭转对导线覆冰增长过程的影响。通过导线表面水滴碰撞系数的计算分析了不同直径导线覆冰的差异性。研究结果表明:自然环境条件下,风速对导线雾凇覆冰冰形起决定性作用,覆冰主要在导线迎风面(横向迎风侧)累积,而背风侧和纵向覆冰较少。覆冰厚度随时间非线性增长,导线直径越小,覆冰厚度增长越快。导线扭转使得导线背风侧向迎风侧转变,覆冰厚度增长速率加快。雨凇覆冰时,除迎风侧翼型覆冰外,导线下方易冻结形成冰棱,使得冰形结构更为复杂。

    Abstract:

    The icing of transmission lines seriously threatens the safety of power grid. The icing process of transmission lines is complicated and involves many influential factors. The accurate understanding of the law of icing is the basis for the establishment and optimization of an icing numerical model. Different kinds of conductors were tested under natural icing conditions on Xuefeng Mountain Natural Icing Test Base. The effects of conductor diameter, conductor surface treatment, icing type and torsion on icing process were studied. The characteristics of icing on conductors with different diameters were analyzed by calculating the water droplet collision efficiency. The results show that under the natural environment, the wind velocity was the key factor which determined the rime shape on transmission lines. Meanwhile, the icing thickness increased nonlinearly with time. The smaller the conductor diameter, the faster the icing thickness increased. The conductor torsion made the leeward side of conductor turn to the windward side, which increased the icing rate. When the icing type became glaze, in addition to the windward wing icing, more icicles were likely formed under a conductor. As a result, the ice structure became more complex.

    参考文献
    [1] 罗剑波, 郁琛, 谢云云, 等. 关于自然灾害下电力系统安全稳定防御方法的评述[J]. 电力系统保护与控制, 2018, 46(6):158-170.Luo J B, Yu C, Xie Y Y, et al. A review on risk assessment of power grid security and stability under natural disasters[J]. Power System Protection and Control, 2018, 46(6):158-170. (in Chinese)
    [2] 蒋兴良, 张丽华. 导线覆冰碰冻率及最大覆冰直径分析[J]. 中国电机工程学报, 1999, 19(9):10-13.Jiang X L, Zhang L H. Collision & freezing efficiency of droplets with conductor and the possible maximum diameter of the iced conductor[J]. Proceedings of the CSEE, 1999, 19(9):10-13. (in Chinese)
    [3] He Q, Zhang J, Deng M Y, et al. Rime icing on bundled conductors[J]. Cold Regions Science and Technology, 2019, 158:230-236.
    [4] 蒋兴良, 舒立春, 孙才新. 电力系统污秽与覆冰绝缘[M]. 北京:中国电力出版社, 2009.Jiang X L, Shu L C, Sun C X. Insulation of electric power system under pollution and icing conditions[M]. Beijing:China Electric Power Press, 2009. (in Chinese)
    [5] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京:中国电力出版社, 2002.Jiang X L, Yi H. Icing and protection of transmission lines[M]. Beijing:China Electric Power Press, 2002. (in Chinese)
    [6] 王守礼, 李家垣. 云南高海拔地区电线覆冰问题研究[M]. 昆明:云南科技出版社, 1993.Wang S L, Li J Y. Study on the problem of wire icing at high altitude in Yunnan Province[M]. Kun Ming:Yunnan Science and Technology Press, 1993. (in Chinese)
    [7] 蒋兴良. 输电线路导线覆冰机理和三峡地区覆冰规律及影响因素研究[D]. 重庆:重庆大学, 1997.Jiang X L. Study on icing mechanism of overhead transmission line and icing performance in the Three Gorges District[D]. Chongqing:Chongqing University, 1997. (in Chinese)
    [8] Imai I. Studies on ice accretion[J]. Researches on Snow and Ice, 1954, 3(1):35-44.
    [9] Lenhard R W Jr. An indirect method for estimating the weight of glaze on wires[J]. Bulletin of the American Meteorological Society, 1955, 36(1):1-5.
    [10] Makkonen L. Models for the growth of rime, glaze, icicles and wet snow on structures[J]. Philosophical Transactions of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 2000, 358(1776):2913-2939.
    [11] Fu P, Farzaneh M, Bouchard G. Two-dimensional modelling of the ice accretion process on transmission line wires and conductors[J]. Cold Regions Science and Technology, 2006, 46(2):132-146.
    [12] Fu P, Bouchard G, Farzaneh M. Simulation of ice accumulation on transmission line cables based on time-dependent airflow and water droplet trajectory calculations[C]//Proceedings of OMAE04 23rd International Conference on Offshore Mechanics and Arctic Engineering, June 20-25, 2004, Vancouver, British Columbia, Canada. ASME, 2008:971-977.
    [13] 刘春城, 刘佼. 输电线路导线覆冰机理及雨凇覆冰模型[J]. 高电压技术, 2011, 37(1):241-248.Liu C C, Liu J. Ice accretion mechanism and glaze loads model on wires of power transmission lines[J]. High Voltage Engineering, 2011, 37(1):241-248. (in Chinese)
    [14] 郭昊, 刘沛清, 屈秋林, 等. 输电线雾凇覆冰的工程估算方法[J]. 高电压技术, 2011, 37(4):1041-1049.Guo H, Liu P Q, Qu Q L, et al. Estimation engineering method of rime accretion process on transmission lines[J]. High Voltage Engineering, 2011, 37(4):1041-1049. (in Chinese)
    [15] 蒋兴良, 姜方义, 汪泉霖, 等. 基于最优时间步长模型的输电导线雾凇覆冰预测[J]. 电工技术学报, 2018, 33(18):4408-4418.Jiang X L, Jiang F Y, Wang Q L, et al. Prediction of rime accretion on transmission line based on optimal time step model[J]. Transactions of China Electrotechnical Society, 2018, 33(18):4408-4418. (in Chinese)
    [16] 蒋兴良, 申强. 环境参数对导线覆冰厚度影响的试验分析[J]. 高电压技术, 2010, 36(5):1096-1100.Jiang X L, Shen Q. Experimental research on influence of environmental parameters on the conductor icing thickness[J]. High Voltage Engineering, 2010, 36(5):1096-1100. (in Chinese)
    [17] 汪泉霖. 输电线路导线无扭转覆冰过程的仿真实验方法研究[D]. 重庆:重庆大学, 2018.Wang Q L. Study on the simulation experiment method of ice accretion on transmission line without torsion[D]. Chongqing:Chongqing University, 2018. (in Chinese)
    [18] 陈凌. 旋转圆柱体覆冰增长模型与线路覆冰参数预测方法研究[D]. 重庆:重庆大学, 2011.Chen L. Study on model of ice accretion on rotating cylinder and method for forecasting icing parameters during icing on transmission lines[D]. Chongqing:Chongqing University, 2011. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高晋,蒋兴良,郭思华,韩兴波,张琦.自然条件下输电线路导线覆冰增长特性[J].重庆大学学报,2021,44(8):1-9.

复制
分享
文章指标
  • 点击次数:534
  • 下载次数: 1152
  • HTML阅读次数: 1224
  • 引用次数: 0
历史
  • 收稿日期:2020-11-21
  • 在线发布日期: 2021-08-31
文章二维码