基于BP神经网络的悬垂绝缘子串风偏角预测模型
作者:
中图分类号:

TM74;TM77

基金项目:

国家电网公司科技项目(52170217000U);国家自然科学基金(51277186)。


BP neural network model for dynamic swing angle of suspended insulator string
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    利用有限元方法模拟不同导线型号、导线初始应力、档距、高差等结构参数的输电线路在随机风作用下的动力响应,得到悬垂绝缘子串的风偏角。进而基于有限元模拟结果和BP神经网络构建风偏角的预测模型,将导线型号、档距、高差、导线初始应力、基本风速、保证系数作为模型的输入,悬垂绝缘子串的风偏角作为输出,通过机器学习,并采用评价指标评估其准确性,对模型进行优化。该模型可以方便快捷地预测悬垂绝缘子串的风偏角,为线路塔头绝缘设计提供依据。

    Abstract:

    The dynamic swing angles of suspended insulator strings of transmission lines with different parameters including conductor type, initial stress in conductor, span length and height difference, under stochastic wind field are numerically simulated by means of the finite element method. Based on the finite element simulation results and the BP neural network, a prediction model for the swing angle is constructed. In the model, the conductor type, span length, height difference, initial stress, wind speed and guarantee factor are taken as the input parameters, and the swing angle as the output parameter. The model is optimized by machine learning and accuracy evaluation with specific evaluation indicators. Swing angles of suspended insulator string in stochastic wind field can be predicted conveniently and fast with this model, which provides a basis for the insulation design of tower head in transmission lines.

    参考文献
    [1] 张禹芳. 我国500kV输电线路风偏闪络分析[J]. 电网技术, 2005, 29(7):65-67, 73.Zhang Y F. Analysis on flashover between tower and conducting wires in domestic 500 kV transmission lines caused by windage yaw[J]. Power System Technology, 2005, 29(7):65-67, 73. (in Chinese)
    [2] 胡毅. 500kV输电线路风偏跳闸的分析研究[J]. 高电压技术, 2004, 30(8):9-10. Hu Y. Study on trip caused by windage yaw of 500kV transmission line[J]. High Voltage Engineering, 2004, 30(8):9-10. (in Chinese)
    [3] 国家电力公司东北电力设计院. 电力工程高压送电线路设计手册[M]. 第二版. 北京:中国电力出版社, 2003.Northeast Electric Power Design Institute of State Power Corporation. Design manual of high voltage transmission line for power engineering[M]. 2nd edition. Beijing:China Electric Power Press, 2003. (in Chinese)
    [4] Annestrand S, Bossuyt E F, Reppen N D. Insulation performance analysis of a 500-kV transmission line design[J]. IEEE Transactions on Power Apparatus and Systems, 1970, PAS-89(3):429-437.
    [5] Hileman A R. Weather and its effect on air insulation specifications[J]. IEEE Transactions on Power Apparatus and Systems, 1984, PAS-103(10):3104-3116.
    [6] IEEE guide for the application of insulation coordination 1313.2-1999[S]. IEEE, 1999. DOI:10.1109/ieeestd.1999.90576.
    [7] Overhead line design part 1:detailed procedures, DR 08170[S]. Australia:Standards Australia, 2008.
    [8] 严波, 林雪松, 罗伟, 等. 绝缘子串风偏角风荷载调整系数的研究[J]. 工程力学, 2010, 27(1):221-227. Yan B, Lin X S, Luo W, et al. Research on dynamic wind load factors for windage yaw angle of suspension insulator strings[J]. Engineering Mechanics, 2010, 27(1):221-227.(in Chinese)
    [9] Yan B, Lin X S, Luo W, et al. Numerical study on dynamic swing of suspension insulator string in overhead transmission line under wind load[J]. IEEE Transactions on Power Delivery, 2010, 25(1):248-259.
    [10] Xu Y J, You T, Du C L. An integrated micromechanical model and BP neural network for predicting elastic modulus of 3-D multi-phase and multi-layer braided composite[J]. Composite Structures, 2015, 122:308-315.
    [11] Wang J, Xiong X F, Zhou N, et al. Early warning method for transmission line galloping based on SVM and AdaBoost bi-level classifiers[J]. IET Generation, Transmission & Distribution, 2016, 10(14):3499-3507.
    [12] 廖峥, 熊小伏, 李新, 等. 基于BP神经网络的输电线路舞动预警方法[J]. 电力系统保护与控制, 2017, 45(19):154-161. Liao Z, Xiong X F, Li X, et al. An early warning method of transmission line galloping based on BP neural network[J]. Power System Protection and Control, 2017, 45(19):154-161.(in Chinese)
    [13] 李哲, 王建, 梁允, 等. 基于Adaboost算法的输电线路舞动预警方法[J]. 重庆大学学报, 2016, 39(1):32-38, 97. Li Z, Wang J, Liang Y, et al. An early warning method of transmission line galloping based on Adaboost algorithm[J]. Journal of Chongqing University, 2016, 39(1):32-38, 97.(in Chinese)
    [14] Tang Z, Zhu Y R, Nie Y Y, et al. Data-driven train set crash dynamics simulation[J]. Vehicle System Dynamics, 2017, 55(2):149-167.
    [15] 淡淑恒, 吴娜, 李昊东, 等. 基于有限元和神经网络方法对220kV盆式绝缘子均压环结构优化设计[J]. 高压电器, 2018, 54(3):79-85. Dan S H, Wu N, Li H D, et al. Optimization design of grading ring for 220 kV basin-type insulator based on finite element method and neural network method[J]. High Voltage Apparatus, 2018, 54(3):79-85.(in Chinese)
    [16] 110kV~750kV架空输电线路设计规范GB 50545-2010[S]. 北京:中国计划出版社, 2010.Code for design of 110kV-750kV overhead transmission line GB 50545-2010[S]. Beijing:China Planning Press, 2010.6. (in Chinese)
    [17] 1000kV架空输电线路设计规范GB 50665-2011[S]. 北京:中国计划出版社, 2012.Code for design of 1000kV overhead transmission line GB 50665-2011[S]. Beijing:China Planning Press, 2012. (in Chinese)
    [18] 张相庭. 结构风工程:理论·规范·实践[M]. 北京:中国建筑工业出版社, 2006. Zhang X T. Structural wind engineering[M]. Beijing:China Architecture & Building Press, 2006.
    [19] Roshan Fekr M, McClure G. Numerical modelling of the dynamic response of ice-shedding on electrical transmission lines[J]. Atmospheric Research, 1998, 46(1/2):1-11.
    相似文献
    引证文献
引用本文

眭嘉里,严波,林翔,伍川,吕中宾,张博.基于BP神经网络的悬垂绝缘子串风偏角预测模型[J].重庆大学学报,2021,44(8):114-124.

复制
分享
文章指标
  • 点击次数:412
  • 下载次数: 760
  • HTML阅读次数: 1069
  • 引用次数: 0
历史
  • 收稿日期:2020-03-29
  • 在线发布日期: 2021-08-31
文章二维码