具有预设性能的板球系统神经超扭曲滑模控制
CSTR:
作者:
作者单位:

昆明理工大学 信息工程与自动化学院,昆明 650500

作者简介:

夏国锋(1998—),男,硕士研究生,主要从事非线性系统控制研究,(E-mail)3105192457@qq.com。

通讯作者:

向凤红,男,教授,博士,(E-mail)3183992562@qq.com。

中图分类号:

TP273

基金项目:

国家自然科学基金资助项目(61163051)。


Neural super-twisting sliding mode control of the ball and plate system with prescribed performance
Author:
Affiliation:

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (61163051).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种新的具有预设性能的自回归小波神经网络(self-recurrent wavelet neural network,SRWNN)超扭曲非奇异快速终端滑模(super-twisting non-singular fast terminal sliding mode,STNFTSM)控制方法(SRWNN_STNFTSM),在动力学不确定性和未知扰动的情况下提高板球系统的跟踪控制性能。利用预设性能函数(prescribed performance function,PPF),将板球系统受约束的位置误差转换为无约束的误差模型。引入非奇异快速终端滑模(non-singular fast terminal sliding mode, NFTSM)面来消除常规终端滑模控制存在的奇异问题,并加入一个tanh函数的补偿项改进NFTSM滑模面,以调节轨迹跟踪的收敛速度和跟踪精度,同时结合超扭曲算法(super-twisting algorithm,STA)设计STNFTSM控制器,以削弱抖振和集总扰动的影响。针对系统存在的集总扰动,为了保证高跟踪精度,结合STNFTSM设计了自适应SRWNN补偿器来消除扰动,保证了鲁棒性。与现有常规滑模控制相比,仿真验证表明SRWNN_STNFTSM具有良好的跟踪性能和鲁棒性,能够对集总扰动下的板球系统进行准确跟踪。

    Abstract:

    A novel control method, the self-recurrent wavelet neural network super-twisting non-singular fast terminal sliding mode (SRWNN_STNFTSM) control with prescribed performance, is proposed to improve the tracking control performance of the ball and plate system in the presence of dynamic uncertainties and unknown perturbations. The prescribed performance function (PPF) is used to convert the originally constrained position error of the ball and plate system into an unconstrained error model. The non-singular fast terminal sliding mode control (NFTSMC) sliding mode surface is introduced to resolve the singular issue of conventional terminal sliding mode control. Additionally, a compensation term of the tanh function is incorporated to improve the NFTSM sliding mode surface, adjusting the convergence speed and tracking accuracy. Moreover, the SRWNN_ STNFTSM controller is combined with the super-distortion algorithm (STA) to mitigate the effects of chattering and lumped disturbance. To address the lumped disturbance of the system and ensure high tracking accuracy, an adaptive SRWNN compensator is designed in conjunction with the STNFTSM. This compensator is aimed at eliminating disturbances and ensuring robustness. Simulation results compared with existing conventional sliding mode control methods demonstrate that SRWNN_STNFTSM exhibits excellent performance. It accurately tracks the ball and plate system under the influence of lumped disturbances.

    参考文献
    相似文献
    引证文献
引用本文

夏国锋,向凤红.具有预设性能的板球系统神经超扭曲滑模控制[J].重庆大学学报,2024,47(7):98-109.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-08-15
  • 出版日期:
文章二维码