混合动力汽车深度强化学习分层能量管理策略
CSTR:
作者:
作者单位:

重庆大学 机械与运载工程学院,重庆 400044

作者简介:

戴科峰(1997—),男,硕士研究生,主要从事新能源汽车动力传动与控制研究。

通讯作者:

胡明辉,男,教授,博士生导师,(E-mail) minghui_h@163.com。

中图分类号:

U471.15

基金项目:

重庆市技术创新与应用重大主题专项资助项目(cstc2019jscx-zdztzxX0047);国家自然科学基金资助项目(52072053)。


Deep reinforcement learning hierarchical energy management strategy for hybrid electric vehicles
Author:
Affiliation:

College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by Chongqing Technology Innovation and Application Major Special Project (cstc2019jscx-zdztzxX0047) and National Natural Science Foundation of China(52072053).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高混合动力汽车的燃油经济性和控制策略的稳定性,以第三代普锐斯混联式混合动力汽车作为研究对象,提出了一种等效燃油消耗最小策略(equivalent fuel consumption minimization strategy,ECMS)与深度强化学习方法(deep feinforcement learning,DRL)结合的分层能量管理策略。仿真结果证明,该分层控制策略不仅可以让强化学习中的智能体在无模型的情况下实现自适应节能控制,而且能保证混合动力汽车在所有工况下的SOC都满足约束限制。与基于规则的能量管理策略相比,此分层控制策略可以将燃油经济性提高20.83%~32.66%;增加智能体对车速的预测信息,可进一步降低5.12%的燃油消耗;与没有分层的深度强化学习策略相比,此策略可将燃油经济性提高8.04%;与使用SOC偏移惩罚的自适应等效燃油消耗最小策略(A-ECMS)相比,此策略下的燃油经济性将提高5.81%~16.18%。

    Abstract:

    To improve the fuel economy and control strategy stability of hybrid electric vehicles (HEVs), with taking the third-generation Prius hybrid electric vehicle as the research object, a hierarchical energy management strategy is created by combining an equivalent fuel consumption minimization strategy (ECMS) with a deep reinforcement learning (DRL) method. The simulation results show that the hierarchical control strategy not only enables the agent in reinforcement learning to achieve adaptive energy-saving control without a model, but also ensures that the state of charge (SOC) of the hybrid vehicle meets the constraints under all operating conditions. Compared with the rule-based energy management strategy, this layered control strategy improves the fuel economy by 20.83% to 32.66%. Additionally, increasing the prediction information of the vehicle speed by the agent further reduces the fuel consumption by about 5.12%. Compared with the deep reinforcement learning strategy alone, this combined strategy improves fuel economy by about 8.04%. Furthermore, compared with the A-ECMS strategy that uses SOC offset penalty, the fuel economy is improved by 5.81% to 16.18% under this proposed strategy.

    参考文献
    相似文献
    引证文献
引用本文

戴科峰,胡明辉.混合动力汽车深度强化学习分层能量管理策略[J].重庆大学学报,2024,47(1):41-51.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-19
  • 出版日期:
文章二维码