基于改进粒子滤波算法的车速估计
CSTR:
作者:
作者单位:

1.重庆大学 机械与运载工程学院,重庆 400044;2.重庆长安汽车股份有限公司,重庆 400023

作者简介:

高彦(1994—),男,硕士研究生,主要从事智能汽车底盘控制研究,(E-mail)gaoyan_cqu@cqu.edu.cn。

通讯作者:

傅春耘,男,副教授,(E-mail)fuchunyun@cqu.edu.cn。

中图分类号:

U461

基金项目:

重庆市自然科学基金资助项目(cstc2020jcyj-msxmX0664);中央高校基本科研业务费项目(2020CDJ-LHZZ-043)。


Vehicle speed estimation based on a modified particle filter algorithm
Author:
Affiliation:

1.College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, P. R. China;2.Chongqing Chang’an Automobile Co., Ltd., Chongqing 400023, P. R. China

Fund Project:

Supported by the Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0664), and the Fundamental Research Funds for the Central Universities (2020CDJ-LHZZ-043).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于粒子滤波算法设计的车速估计器因提议分布与实际分布不一致导致粒子退化使估计误差变大的问题,提出了一种通过修正提议分布减弱粒子退化影响的改进粒子滤波车速估计器。首先,基于车辆运动学模型和传感器特性建立系统的状态转移方程和观测方程。然后,利用传感器测量值与粒子状态值的差值设计提议分布修正项对状态转移方程进行修正,并对过程噪声做自适应处理。最后,利用CarSim-Simulink联合仿真平台在双移线工况和正弦转角输入工况下进行仿真验证。与自适应粒子滤波器相比,双移线工况下改进粒子滤波估计器产生的纵向速度估计值和侧向速度估计值的平均绝对误差分别减小了40.25%和55.71%;正弦转角输入工况下,改进粒子滤波估计器产生的纵向速度估计值和侧向速度估计值的平均绝对误差分别减小了47.00%和41.21%。

    Abstract:

    For conventional vehicle speed estimators designed based on the particle-filter algorithm, the estimation performance deteriorates if the proposal distribution is inconsistent with the actual distribution. In this paper, an improved particle-filter speed estimator is proposed to tackle this problem by modifying the proposal distribution. Firstly, the state transition equation and the observation equation of the system are established based on vehicle kinematics and sensor characteristics. Then, the difference between sensor measurements and particle state values is employed to design a correction term for the proposal distribution, simultaneously adapting the process noise in the state transition equation. Finally, simulation validation is conducted using CarSim-Simulink co-simulation platform under the double-lane change and the sine-wave steer input maneuvers. Compared with the adaptive particle filter, the proposed estimator shows reductions of 40.25% and 55.71% in the mean absolute deviations (MAD) of the estimated longitudinal velocity and the estimated lateral velocity, respectively, under the double-lane change maneuver; and under the sine-wave steer input maneuver, the reductions are 47.00% and 41.21%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

高彦,傅春耘,杨忠,杨官龙.基于改进粒子滤波算法的车速估计[J].重庆大学学报,2024,47(3):44-52.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-02
  • 出版日期:
文章二维码