运动想象脑机接口的判别迁移特征学习与分类
CSTR:
作者:
作者单位:

重庆大学 电气工程学院,重庆 400030

作者简介:

齐垒(1995—),男,硕士研究生,主要从事脑机接口研究,(E-mail)ql_qilei@163.com。

通讯作者:

陈民铀,男,教授,博士生导师,(E-mail) minyouchen@cqu.edu.cn。

中图分类号:

基金项目:

国家自然科学基金资助项目(51977020)。


Discriminative transfer feature for motor imagery brain-computer interfaces
Author:
Affiliation:

School of Electrical Engineering, Chongqing University, Chongqing 400030, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(51977020).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决不同时间采集的运动想象脑电数据之间存在的分布差异,避免跨时段使用前长时间的重校准步骤,提出了一种基于判别迁移特征学习(discriminative transfer feature learning, DTFL)的运动想象分类方法。DTFL通过联合匹配源域和目标域之间的边缘分布和类条件分布来减少域间的差异,同时最大化类间距离和最小化类内距离来保留类判别信息,从而提升对运动想象的分类性能。基于DTFL的运动想象分类方法无需目标域脑电样本的类别信息,可以有效避免长时间的校准。在脑机接口竞赛数据集上的实验结果表明,DTFL显著优于其他迁移学习方法,有效缓解跨域分布的不一致性,提高了运动想象的分类正确率。

    Abstract:

    To address the cross-sessions variability of motor imagery electroencephalogram (EEG) and eliminate the need for lengthy recalibration step, this study proposes a motor imagery classification method based on discriminative transfer feature learning (DTFL). DTFL aims to reduce domain differences by jointly matching the marginal distribution and class conditional distribution of both domains. Simultaneously, DTFL maximizes inter-class dispersion and minimizes intra-class scatter, preserving class discrimination information and improving classification performance. This method does not require class information for EEG samples in the target domain, effectively avoiding the need for long-term calibration. Experimental results on brain-computer interface competition datasets demonstrate that, compared with some transfer learning methods, the proposed DTFL mitigates cross-session variability and improves the classification accuracy of motor imagery EEG.

    参考文献
    相似文献
    引证文献
引用本文

齐垒,陈民铀,张莉.运动想象脑机接口的判别迁移特征学习与分类[J].重庆大学学报,2024,47(3):86-95.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-02
  • 出版日期:
文章二维码