基于mRMR-IPSO的短期负荷预测双阶段特征选择
CSTR:
作者:
作者单位:

1.国网湖北超高压公司,武汉 430000;2.国网浙江省电力有限公司湖州供电公司,浙江 湖州 313000

作者简介:

焦龄霄(1999—),女,主要从事电力负荷预测研究,(E-mail)13012183731@163.com。

通讯作者:

中图分类号:

TM715

基金项目:

国网湖北电力公司科技项目(521520220006)。


Dual-stage feature selection for short-term load forecasting based on mRMR-IPSO
Author:
Affiliation:

1.State Grid Hubei Extra High Voltage Company, Wuhan 430000, P. R. China;2.State Grid Zhejiang Electric Power Co., Ltd. Huzhou Power Supply Company, Huzhou 313000, Zhejiang, P. R. China

Fund Project:

Supported by State Grid Hubei Electric Power Company Technology Project(521520220006).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电力负荷具有时空多变的特性,受众多因素的影响,在短期负荷预测中较多的输入特征会造成维度灾难,导致模型预测性能不佳,因此选择合理的输入特征集至关重要。文章提出一种新的短期负荷预测特征选择方法——mRMR-IPSO双阶段法。利用最大相关最小冗余(max-relevance and min-redundancy,mRMR)判据对原始特征进行排序,考虑输入特征与输出特征之间相关性和输入特征间冗余性,筛选掉一些排序靠后的特征,初选出对预测效果影响显著的特征子集;采用基于改进的粒子群优化算法(improved particle swarm optimization,IPSO)的搜索策略,以LightGBM模型的预测精度为适应度函数,对初选特征子集进行精选,得到最优特征子集。算例结果表明,所提方法能在对原始特征集大幅降维的情况下提升预测精度。

    Abstract:

    Power load exhibits characteristics of temporal and spatial variation and is affected by various factors. In short-term load forecasting, an excessive number of input features can cause dimensionality disasters and lead to poor model prediction performance. Therefore, selecting a reasonable input feature set is crucial. This article proposes a novel feature selection method for short-term load forecasting–the mRMR-IPSO two-stage method. The max-relevance and min-redundancy (mRMR) criterion is employed to rank the original features, considering both the correlation between input and output features and the redundancy among input features. This process filters out less impactful features ranked lower and initially selects these significantly influencing the prediction. Then, an improved particle swarm optimization (IPSO) algorithm-based search strategy is adopted. The prediction accuracy of the LightGBM model is used as the fitness function during the search, facilitating the selection of primary feature subsets and obtaining optimal feature subsets. Calculation examples show that the proposed method improves prediction accuracy while substantially reducing the original feature set.

    参考文献
    相似文献
    引证文献
引用本文

焦龄霄,周凯,张子熙,韩飞,时伟君,洪叶,罗朝丰.基于mRMR-IPSO的短期负荷预测双阶段特征选择[J].重庆大学学报,2024,47(5):98-109.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-11
  • 出版日期:
文章二维码