静动态压缩下千枚岩长径比效应影响研究
作者:
作者单位:

1.长安大学 公路学院,西安 710064;2.陕西建工第十二建设集团有限公司,陕西 安康 725000;3.葛洲坝集团交通投资有限公司,武汉 430000;4.火箭军工程大学 作战保障学院,西安 710025;5.西安科技大学 建筑与土木工程学院, 西安 710054

作者简介:

许江波(1985—),男,副教授,博士生导师,主要从事岩土工程方向研究,(E-mail) xujiangbo@yeah.net。

中图分类号:

TU45

基金项目:

陕西省重点研发计划项目(2024GXYBXM-372, 2024QCY-KXJ-176,2023-CX-TD-35, 2023KXJ-159);陕西省交通厅(22-38K,23-39R)。


Influence of phyllite aspect ratio under static and dynamic compression
Author:
Affiliation:

1.School of Highway, Chang’an University, Xi’an 710064, P. R. China;2.Shaanxi Construction No.12 Construction Group Co., Ltd., An’kang 725000 Shaanxi, P. R. China;3.Gezhouba Group Transportation Investment Co., Ltd., Wuhan 430000, P. R. China;4.College of Combat Support, Rocket Force of University, Xi’an 710025, P. R. China;5.School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China

Fund Project:

Supported by Key Research and Development Projects of Shaanxi Province(2024GXYBXM-372, 2024QCY-KXJ-176,2023-CX-TD-35, 2023KXJ-159), and Department of Transport of Shaanxi Province(22-38K,23-39R).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了研究长径比效应对层状千枚岩力学特性、能量耗散及破坏模式的影响,文中选用4种倾角(α=0°、30°、60°、90°)下不同长径比(L/D=0.5、0.6、0.8、1.0、1.2、1.6、2.0)的千枚岩分别进行了静载单轴压缩和分离式霍普金森杆(SHPB)试验。结果发现,静载压缩试验条件下,不同倾角下千枚岩随长径比的增大,峰值强度和峰值应变均减小。通过单轴动态压缩试验,发现4种层理倾角千枚岩动态抗压强度与试样长径比呈二次函数关系,随着长径比的增加,动态抗压强度出现一个峰值后逐渐降低;千枚岩峰值应变与试样长径比呈指数函数关系下降;对动态冲击压缩试验进行能量分析,发现不同工况的千枚岩在同一冲击气压下,入射能、反射能、透射能均呈现出先缓慢上升再快速上升最后趋于稳定的三段式变化;随着试样长径比增大,千枚岩反射能比先增大后减小,透射能比先减小后增大;采用能量比值法进行对比分析,发现在长径比L/D=1.2时,千枚岩的反射能比达到最大,透射能比达到最小;对千枚岩的宏观破坏模式进行分析,发现动态冲击压缩下千枚岩的宏观破坏模式受长径比影响较大,长径比越小破坏越完全;长径比越大,破坏越不充分。

    Abstract:

    This study investigates the influence of aspect ratio on the mechanical properties, energy dissipation, and failure mode of layered phyllite. Uniaxial compression and split Hopkinson pressure bar (SHPB) tests were conducted on phyllite specimens with varying aspect ratios (L/D=0.5,0.6,0.8,1.0,1.2,1.6,2.0) at four inclination angles(α=0°,30°,60°,90°). Results from static uniaxial compression test reveal that the peak strength and the peak strain of phyllite decrease with increasing aspect ratio at different dip angles. Uniaxial dynamic compression tests show that the dynamic compressive strength of phyllite with four bedding dip angles exhibits a quadratic function relationship with the length-diameter ratio of the specimen under dynamic impact compression conditions. With increasing length-diameter ratio, the dynamic compressive strength reaches a peak and then gradually decreases. The peak strain of phyllite decreases exponentially with the aspect ratio of specimen. Energy analysis of dynamic impact compression test indicates a three-stage change in incident energy, reflection energy, and transmission energy of phyllite under different working conditions, from slow rise to rapid rise and finally to being stable. The reflection energy ratio of phyllite increases first and then decreases with the increase of the length-diameter ratio, while the transmission energy ratio shows the opposite trend. Comparative analysis using the energy ratio method reveals that the reflection energy ratio of phyllite reaches its maximum and the transmission energy ratio reaches its minimum when the aspect ratio is L/D=1.2. Macroscopic failure mode analysis indicates that the aspect ratio significantly affects the macroscopic failure mode of phyllite under dynamic impact compression, with smaller the aspect ratios resulting in more complete fractures and larger aspect ratios leading to less sufficient damage.

    参考文献
    [1] Sanei M, Faramarzi L, Fahimifar A, et al. Shear strength of discontinuities in sedimentary rock masses based on direct shear tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 119-131.
    [2] Buzzi O, Casagrande D. A step towards the end of the scale effect conundrum when predicting the shear strength of large in situ discontinuities[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 105: 210-219.
    [3] Liang Z Z, Wu N, Li Y C, et al. Numerical study on anisotropy of the representative elementary volume of strength and deformability of jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4387-4402.
    [4] 卢妮妮. 节理岩体力学性质尺寸效应离散元模拟研究[D]. 武汉: 武汉大学, 2017.Lu N N. Study on the size effect of mechanical properties of jointed rock mass by discrete element simulation[D].Wuhan: Wuhan University, 2017. (in Chinese)
    [5] 唐伟, 赵晓豹, 雷继辕, 等. 不同围压下岩石抗压强度与变形参数尺寸效应的数值模拟[J]. 高校地质学报, 2016, 22(3): 580-588.Tang W, Zhao X B, Lei J Y, et al. Numerical simulation on the size effect of compressive strength and deformation parameters of rock materials under different confining pressures[J]. Geological Journal of China Universities, 2016, 22(3): 580-588.(in Chinese)
    [6] 王创业, 常新科, 杜晓娅. 不同尺寸砂岩破坏全过程声发射主频分析[J]. 矿冶工程, 2019, 39(6): 10-14.Wang C Y, Chang X K, Du X Y. Analysis of dominant frequency of acoustic emission through the whole failure process of different size of sandstone[J]. Mining and Metallurgical Engineering, 2019, 39(6): 10-14.(in Chinese)
    [7] 刘丹, 黄曼, 洪陈杰, 等. 基于代表性取样的节理岩体抗压强度尺寸效应试验研究[J]. 岩石力学与工程学报, 2021, 40(4): 766-776.Liu D, Huang M, Hong C J, et al. Experimental study on size effect of compressive strength of jointed rock mass based on representative sampling[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 766-776.(in Chinese)
    [8] 伍法权, 乔磊, 管圣功, 等. 小尺寸岩样单轴压缩试验尺寸效应研究[J]. 岩石力学与工程学报, 2021, 40(5): 865-873.Wu F Q, Qiao L, Guan S G, et al. Uniaxial compression test study on size effect of small size rock samples[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 865-873.(in Chinese)
    [9] Paterson M S, Wong T F. Experimental rock deformation the brittle field[M]. 2nd, completely rev. and updated ed. Berlin: Springer, 2005.
    [10] 刘宝琛, 张家生, 杜奇中, 等. 岩石抗压强度的尺寸效应[J]. 岩石力学与工程学报, 1998, 17(6): 611-614.Liu B C, Zhang J S, Du Q Z, et al. A study of size effect for compression strength of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 611-614.(in Chinese)
    [11] 王青元, 朱万成, 刘洪磊, 等. 单轴压缩下绿砂岩长期强度的尺寸效应研究[J]. 岩土力学, 2016, 37(4): 981-990.Wang Q Y, Zhu W C, Liu H L, et al. Size effect of long-term strength of sandstone under uniaxial compression[J]. Rock and Soil Mechanics, 2016, 37(4): 981-990.(in Chinese)
    [12] 梁昌玉, 李晓, 张辉, 等. 中低应变率范围内花岗岩单轴压缩特性的尺寸效应研究[J]. 岩石力学与工程学报, 2013, 32(3): 528-536.Liang C Y, Li X, Zhang H, et al. Research on size effect of uniaxial compression properties of granite under medium and low strain rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 528-536.(in Chinese)
    [13] 余洋林, 许江波, 费东阳, 等. 花岗岩单轴压缩力学特性试验及数值模拟[J]. 桂林理工大学学报, 2022, 42(1): 85-92.Yu Y L, Xu J B, Fei D Y, et al. Test and numerical simulation of mechanical properties of granite under uniaxial compression[J]. Journal of Guilin University of Technology, 2022, 42(1): 85-92.(in Chinese)
    [14] 许江波, 余洋林, 费东阳, 等. 闪长岩单轴压缩力学特性试验及数值模拟研究[J]. 公路, 2021, 66(9): 329-335.Xu J B, Yu Y L, Fei D Y, et al. Experimental and numerical simulation study on mechanical properties of diorite under uniaxial compression[J]. Highway, 2021, 66(9): 329-335.(in Chinese)
    [15] 平琦, 张号, 苏海鹏. 不同长度石灰岩动态压缩力学性质试验研究[J]. 岩石力学与工程学报, 2018, 37(S2): 3891-3897.Ping Q, Zhang H, Su H P. Experimental study on dynamic compressive mechanical properties of limestone with different lengths[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3891-3897.(in Chinese)
    [16] 李地元, 肖鹏, 谢涛, 等. 动静态压缩下岩石试样的长径比效应研究[J]. 实验力学, 2018, 33(1): 93-100.Li D Y, Xiao P, Xie T, et al. On the effect of length to diameter ratio of rock specimen subjected to dynamic and static compression[J]. Journal of Experimental Mechanics, 2018, 33(1): 93-100.(in Chinese)
    [17] 许江波, 崔易仑, 孙浩珲, 等. 节理千枚岩动力学特性研究[J]. 地下空间与工程学报, 2022, 18(S1): 97-105, 113.Xu J B, Cui Y L, Sun H H, et al. Study on dynamic characteristics of jointed phyllite[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(S1): 97-105, 113.(in Chinese)
    [18] 武仁杰, 李海波, 李晓锋, 等. 不同冲击载荷下层状千枚岩压缩力学特性研究[J]. 岩石力学与工程学报, 2019, 38(S2): 3304-3312.Wu R J, Li H B, Li X F, et al. Study on compressive mechanical properties of layered phyllite under different impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3304-3312.(in Chinese)
    [19] 王磊, 陈礼鹏, 袁秋鹏, 等. 不同冲击气压下煤样动态剪切强度的长径比效应[J]. 岩土工程学报, 2024, 46(1): 131-139.Wang L, Chen L P, Yuan Q P, et al. Length-diameter ratio effects of dynamic shear strength of coal samples under different impact air pressures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 131-139.(in Chinese)
    [20] 罗伊. 岩石强度的动态尺寸效应机理研究[D]. 北京: 北京建筑大学, 2023.Luo Y. Study on the mechanism of dynamic size effect on the strength of rock[D].Beijing: Beijing University of Civil Engineering and Architecture, 2023. (in Chinese)
    [21] 张志镇, 高峰. 单轴压缩下红砂岩能量演化试验研究[J]. 岩石力学与工程学报, 2012, 31(5): 953-962.Zhang Z Z, Gao F. Experimental research on energy evolution of red sandstone samples under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 953-962.(in Chinese)
    [22] 孟庆彬, 韩立军, 浦海, 等. 应变速率和尺寸效应对岩石能量积聚与耗散影响的试验[J]. 煤炭学报, 2015, 40(10): 2386-2398.Meng Q B, Han L J, Pu H, et al. Experimental on the effect of strain rate and size on the energy accumulation and dissipation of rock[J]. Journal of China Coal Society, 2015, 40(10): 2386-2398.(in Chinese)
    [23] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010.Xie H P, Ju Y, Li L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010.(in Chinese)
    [24] 刘刚, 肖福坤, 秦涛. 小尺寸效应下岩石力学特性及声发射规律[J]. 岩石力学与工程学报, 2018, 37(S2): 3905-3917.Liu G, Xiao F K, Qin T. Rock mechanical properties and acoustic emission law under small-scale effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3905-3917.(in Chinese)
    [25] 许江波, 费东阳, 孙浩珲, 等. 节理千枚岩能量传递与动力学特性[J]. 东北大学学报(自然科学版), 2021, 42(7): 986-995.Xu J B, Fei D Y, Sun H H, et al. Energy transfer and dynamic characteristics of jointed phyllite[J]. Journal of Northeastern University (Natural Science), 2021, 42(7): 986-995.(in Chinese)
    [26] 王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005.Wang L L. Foundation of stress waves[M]. 2nd ed. Beijing: National Defense Industry Press, 2005.(in Chinese)
    [27] 高富强, 杨军, 刘永茜, 等. 岩石准静态和动态冲击试验及尺寸效应研究[J]. 煤炭科学技术, 2009, 37(4): 19-22, 68.Gao F Q, Yang J, Liu Y Q, et al. Research on rock parastatic and dynamic impact test and size effect[J]. Coal Science and Technology, 2009, 37(4): 19-22, 68.(in Chinese)
    [28] 谢和平, 彭瑞东, 鞠杨, 等. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报, 2005, 24(15): 2603-2608.Xie H P, Peng R D, Ju Y, et al. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603-2608.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许江波,余洋林,孙国政,孙浩珲,赖杰,王磊.静动态压缩下千枚岩长径比效应影响研究[J].重庆大学学报,2024,47(6):43-57.

复制
分享
文章指标
  • 点击次数:1148
  • 下载次数: 412
  • HTML阅读次数: 43
  • 引用次数: 0
历史
  • 收稿日期:2023-04-17
  • 在线发布日期: 2024-07-02
文章二维码