红黑着色的相场两相流并行投影算法
作者:
作者单位:

重庆大学 航空航天学院,重庆 400044

作者简介:

王小双(1995—),男,硕士研究生,主要从事不可压多相流算法研究与程序开发方向研究,(E-mail)wangxs1995s@cqu.edu.cn。

通讯作者:

张良奇,男,研究员,博士生导师,主要从事计算流体力学特色数值方法研究及其在前沿流体力学问题中的应用研究,(E-mail)zhangliangqi@cqu.edu.cn。

基金项目:

国家自然科学基金资助项目(12102071,12172070);中央高校基本科研业务费资助项目(2021CDJQY-055)。


A novel red-black coloring parallel projection algorithm for two-phase flow using the phase field method
Author:
Affiliation:

College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (12102071, 12172070), and the Fundamental Research Funds for the Central Universities (2021CDJQY-055).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    提出一种交错并行的有限体积投影算法求解基于相场法的两相流控制方程组。该算法的实施主要依赖于压力泊松方程的显式推进设计,从而突破投影算法求解不可压Navier-Stokes方程的效率瓶颈。同时,提出了一种交错扫描策略来更新节点上的变量,以实现更紧凑的时空耦合。本算法与相场模型相结合,能够高效、准确地捕获相界面的动态拓扑变化。测试算例结果表明:网格量为131 072,采用8线程CPU并行时,新提出并行算法的效率达到串行标准投影算法的80倍以上。

    Abstract:

    In this study, an innovative parallel finite volume projection algorithm with a novel red-black coloring approach is proposed to solve the two-phase flow control equations using the phase field method. This strategy relies on the explicit advancement of the pressure Poisson equation, thus effectively overcoming the efficiency limitation inherent in the traditional projection algorithms for solving the incompressible Navier-Stokes equations. Moreover, we implement an interleaved scanning strategy for updating nodal variables, which significantly enhances the spatiotemporal coupling in a compact manner. The integration of this technique with the phase field method facilitates more accurate capture of interface dynamics and topology at a lower cost. Test results show that, utilizing a grid size of 131 072 and an 8-thread CPU parallelization, the proposed parallel algorithm is more than 80 times more efficient than the serial standard projection algorithm.

    参考文献
    [1] Barros A P, Prat O P, Testik F Y. Size distribution of raindrops[J]. Nature Physics, 2010, 6(4): 232.
    [2] O’Sullivan J J, Norwood E A, O’Mahony J A, et al. Atomisation technologies used in spray drying in the dairy industry: a review[J]. Journal of Food Engineering, 2019, 243: 57-69.
    [3] Atencia J, Beebe D J. Controlled microfluidic interfaces[J]. Nature, 2005, 437(7059): 648-655.
    [4] Guermond J L, Minev P, Shen J. An overview of projection methods for incompressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44/45/46/47): 6011-6045.
    [5] Dong S, Shen J. A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios[J]. Journal of Computational Physics, 2012, 231(17): 5788-5804.
    [6] Dodd M S, Ferrante A. A fast pressure-correction method for incompressible two-fluid flows[J]. Journal of Computational Physics, 2014, 273: 416-434.
    [7] Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradient flows[J]. Journal of Computational Physics, 2018, 353: 407-416.
    [8] Lee C S, Hamon F P, Castelletto N, et al. An aggregation-based nonlinear multigrid solver for two-phase flow and transport in porous media[J]. Computers & Mathematics With Applications, 2022, 113: 282-299.
    [9] Liu T. A nonlinear multigrid method for inverse problem in the multiphase porous media flow[J]. Applied Mathematics and Computation, 2018, 320: 271-281.
    [10] Weymouth G D. Data-driven Multi-Grid solver for accelerated pressure projection[J]. Computers & Fluids, 2022, 246: 105620.
    [11] Fuka V. PoisFFT: a free parallel fast Poisson solver[J]. Applied Mathematics and Computation, 2015, 267: 356-364.
    [12] Dolean V, Jolivet P, Nataf F. An introduction to domain decomposition methods[M]. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2015.
    [13] Djanali V, Armfield S W, Kirkpatrick M P, et al. Parallel speed-up of preconditioned fractional step navier-stokes solvers[J]. Applied Mechanics and Materials, 2014, 493: 215-220.
    [14] Adam N, Franke F, Aland S. A simple parallel solution method for the navier-stokes cahn-hilliard equations[J]. Mathematics, 2020, 8(8): 1224.
    [15] Kuhn M B, Deskos G, Sprague M A. A mass-momentum consistent coupling for mesh-adaptive two-phase flow simulations[J]. Computers & Fluids, 2023, 252: 105770.
    [16] Ding L, Shu C, Ding H, et al. Stencil adaptive diffuse interface method for simulation of two-dimensional incompressible multiphase flows[J]. Computers & Fluids, 2010, 39(6): 936-944.
    [17] Sakane S, Takaki T, Rojas R, et al. Multi-GPUs parallel computation of dendrite growth in forced convection using the phase-field-lattice Boltzmann model[J]. Journal of Crystal Growth, 2017, 474: 154-159.
    [18] Ha S, Park J, You D. A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2018, 352: 246-264.
    [19] Qiu R D, Huang R F, Xiao Y, et al. Physics-informed neural networks for phase-field method in two-phase flow[J]. Physics of Fluids, 2022, 34(5): 052109.
    [20] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
    [21] Ding H, Spelt P D M, Shu C. Diffuse interface model for incompressible two-phase flows with large density ratios[J]. Journal of Computational Physics, 2007, 226(2): 2078-2095.
    [22] Liu H H, Valocchi A J, Zhang Y H, et al. Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel[J]. Journal of Computational Physics, 2014, 256: 334-356.
    [23] Kim J. A continuous surface tension force formulation for diffuse-interface models[J]. Journal of Computational Physics, 2005, 204(2): 784-804.
    [24] Gottlieb S, Shu C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of Computation, 1998, 67(221): 73-85.
    [25] Friedrich O. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids[J]. Journal of Computational Physics, 1998, 144(1): 194-212.
    [26] Magnini M, Pulvirenti B, Thome J R. Characterization of the velocity fields generated by flow initialization in the CFD simulation of multiphase flows[J]. Applied Mathematical Modelling, 2016, 40(15/16): 6811-6830.
    [27] Mirjalili S, Ivey C B, Mani A L. Comparison between the diffuse interface and volume of fluid methods for simulating two-phase flows[J]. International Journal of Multiphase Flow, 2019, 116: 221-238.
    [28] Mirjalili S, Khanwale M A, Mani A L. Assessment of an energy-based surface tension model for simulation of two-phase flows using second-order phase field methods[J]. Journal of Computational Physics, 2023, 474: 111795.
    [29] Hysing S, Turek S, Kuzmin D, et al. Quantitative benchmark computations of two-dimensional bubble dynamics[J]. International Journal for Numerical Methods in Fluids, 2009, 60(11): 1259-1288.
    [30] Klostermann J, Schaake K, Schwarze R. Numerical simulation of a single rising bubble by VOF with surface compression[J]. International Journal for Numerical Methods in Fluids, 2013, 71(8): 960-982.
    [31] Xiao Y, Zeng Z, Zhang L Q, et al. A spectral element-based phase field method for incompressible two-phase flows[J]. Physics of Fluids, 2022, 34(2): 022114.
    [32] Aland S, Voigt A. Benchmark computations of diffuse interface models for two-dimensional bubble dynamics[J]. International Journal for Numerical Methods in Fluids, 2012, 69(3): 747-761.
    [33] Martin J C, Moyce W J, Penney W G, et al. Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1952, 244(882): 312-324.
    [34] Yu C H, Sheu T W H. Development of a coupled level set and immersed boundary method for predicting dam break flows[J]. Computer Physics Communications, 2017, 221: 1-18.
    [35] Meng W K, Liao L, Chen M, et al. An enhanced CLSVOF method with an algebraic second-reconstruction step for simulating incompressible two-phase flows[J]. International Journal of Multiphase Flow, 2022, 154: 104151.
    [36] Li Y L, Wan L, Wang Y H, et al. Numerical investigation of interface capturing method by the Rayleigh-Taylor instability, dambreak and solitary wave problems[J]. Ocean Engineering, 2019, 194: 106583.
    [37] Kamra M M, Mohd N, Liu C, et al. Numerical and experimental investigation of three-dimensionality in the dam-break flow against a vertical wall[J]. Journal of Hydrodynamics, 2018, 30(4): 682-693.
    相似文献
    引证文献
引用本文

王小双,张良奇,肖姚,曾忠.红黑着色的相场两相流并行投影算法[J].重庆大学学报,2024,47(6):75-85.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-02
  • 在线发布日期: 2024-07-02
文章二维码