基于APSOLSTM神经网络模型优化方法研究
CSTR:
作者:
作者单位:

国际关系学院 网络空间安全学院,北京 100091

作者简介:

袁琳娜(1998—),女,主要从事数据工程与科学方向研究,(E-mail)459131607@qq.com。

通讯作者:

中图分类号:

TP183

基金项目:

国家安全高精尖学科建设科研专项(2019GA37)。


LSTM neural network model optimization algorithm based on APSO
Author:
Affiliation:

School of Cyber Science and Engineering, University of International Relations, Beijing 100091, P. R. China

Fund Project:

Suppored by National Security High Precision and Advanced Discipline Construction Research Project(2019GA37).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多隐含层长短期记忆神经网络(long short-term memory,LSTM)循环神经网络权值与阈值更新依赖梯度下降算法,模型收敛速度慢,网络节点的权值计算易出现局部极值,导致LSTM神经网络模型不能得到全局最优,网络模型泛化能力下降,限制LSTM循环神经网络的应用。因此,利用加速粒子群优化算法(accelerated particle swarm optimization,APSO)的优化能力,提出一种改进LSTM神经网络模型。该模型将均方根误差设计为适宜值函数,并利用APSO算法构建寻优策略,对各神经元节点间的权值进行全局优化,提升模型的泛化和预测性能。通过经典DataMarket及UCI数据集的实验结果表明,APSO-LSTM模型的预测精度较传统LSTM模型有显著提升,验证了APSO-LSTM模型的有效性和实用性。

    Abstract:

    Due to the slow convergence speed of the model with many hidden layers in the LSTM (long short-term memory) recurrent neural network, the updating of its weights and thresholds depends on the gradient descent algorithm, which may lead to the local extremum phenomenon in the weight correction of the network nodes, resulting in the reduction of the generalization ability of the LSTM neural network model. Based on this, this paper proposes an optimized LSTM neural network model based on APSO (accelerated particle swarm optimization) algorithm (APSO-LSTM). In this model, root mean square error is designed as an appropriate value function, and APSO algorithm is used to build an optimization system to optimize the weights of each neuron node globally, so as to improve the prediction performance of the model. The experimental results on the classic DataMarket and UCI datasets show that the prediction accuracy of APSO-LSTM model is significantly improved compared with the traditional LSTM model, which verifies the effectiveness of APSO-LSTM model.

    参考文献
    相似文献
    引证文献
引用本文

袁琳娜,杨良斌.基于APSOLSTM神经网络模型优化方法研究[J].重庆大学学报,2024,47(8):103-111.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-02
  • 出版日期:
文章二维码