基于双边滤波石质文物逆向建模及其稳定性分析
作者:
作者单位:

1.1a兰州大学,土木工程与力学学院,兰州 730000;2.1b兰州大学,西部灾害与环境力学教育部重点实验室,兰州 730000;3.1c兰州大学,岩土质文物保护基础科学 研究与人才培养甘肃省文物局重点科研基地,兰州 730000;4.中国文化遗产研究院, 北京 100029;5.大足石刻研究院,重庆 402360

作者简介:

张理想(1992—),男,博士,实验师,主要从事石窟寺保护方向研究,(E-mail)zhanglx2019@lzu.edu.cn。

通讯作者:

张景科,男,教授,博士生导师,(E-mail)zhangjink@lzu.edu.cn。

基金项目:

国家重点研发计划项目(2019YFC1520600)。


Refinement modeling and stability analysis of stone cultural relics based on bilateral filtering
Author:
Affiliation:

1.1aCollege of Civil Engineering and Mechanics,Lanzhou University, Chongqing402360, P. R. China;2.1bKey Laboratory of Mechanics on Disaster and Environment in Western China,The Ministry of Education of China,Lanzhou University, Lanzhou730000, P. R. China;3.1cKey Scientific Research Base of Basic Science of Rock-EarthenRelics Protection and Talents Cultivation Lanzhou University Cultural Heritage Bureau of Gansu Province,Lanzhou University, Lanzhou730000, P. R. China;4. Chinese Academy of Cultural Heritage, Beijing100029, P. R. China;5.Academy of Dazu Rock Carvings, Chongqing402360, P. R. China

Fund Project:

Supported by Natioal Key R&D Program of China(2019YFC1520600).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [1]
  • | | |
  • 文章评论
    摘要:

    石质文物的长期稳定性问题是文物保护工作中的重点。以大足石刻卧佛前的目犍连菩萨像为研究对象,基于双边滤波算法,将三维激光扫描仪获取的点云数据导入PCL平台,实现文物表面噪声点的去除,建立包含裂隙结构面在内的菩萨像三维精细化实体模型。基于强度折减原理采用有限差分软件FLAC3D,对菩萨像现存状态展开稳定性分析,结果表明:1)双边滤波法去噪后的菩萨像模型平均偏差为-5.0~4.0 mm,标准值为1.1 mm,在去除噪声的同时完整保留了文物表面特征;2)重力荷载下,菩萨像颈部受压,项部受拉;头部裂隙的出现导致内部应力发生重分布,峰值拉应力由项部移动至裂隙端;3)菩萨像头部位移变化与折减系数呈正相关,当折减系数为1.28时,头部位移敏感度急剧增大,向临空面倾倒;4)菩萨像破坏面沿裂隙端、颈部向内部延伸,塑性区体积、最大剪应变增量逐步增大,在两区域形成抛物线贯通破坏面。该研究方法为小型、具有复杂几何特征的石质文物稳定性分析提供思路。

    Abstract:

    The long-term stability of stone cultural relics is a key concern in their preservation. This study focuses on the Bodhisattva statue in front of the reclining Buddha carved on Dazu Rock Carvings. Using bilateral filtering algorithm, the point cloud data from a 3D laser scanner were processed in the PCL platform to remove noise, preserving the surface details of the cultural relics. A refined 3D model of the Bodhisattva statue, including its fissure structure, was established. The statue’s stability was analyzed using the strength reduction method with FLAC3D software. The findings include: 1) The denoising method resultes in an average deviation of -5.0 mm to 4.0 mm and a standard value of 1.1 mm, which completely retained the artifact’s surface characteristics. 2) Under gravity load, the statue’s neck compressed while the top stretched, with cracks in the head redistributing internal stress, and the peak tensile stress moving from the top to the crack end. 3) The statue’s head displacement correlates positively with the reduction coefficient, sharply increasing at 1.28, indicating a tendency to tip. 4) The failure surface extends along the crack and neck into the relic’s interior, with the plastic zone and maximum shear strain increment forming a parabola through the two regions. This method offers insights for analyzing the stability of small stone artifacts with complex geometries.

    参考文献
    [1] Ambraseys N, Psycharis I N. Earthquake stability of columns and statues[J]. Journal of Earthquake Engineering, 2011, 15(5): 685-710.
    [2] Guo Z Q, Chen W W, Zhang J K, et al. Seismic responses of the densely distributed caves of the Mogao Grottoes in China[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1335-1349.
    [3] 王旭东, 张景科, 孙满利, 等. 莫高窟南区洞窟古人开凿智慧初探[J]. 岩石力学与工程学报, 2018, 37(S2): 4207-4220.Wang X D, Zhang J K, Sun M L, et al. Study on the ancient wisdom in the excavation of caves in the south area of Mogao Grottoes[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4207-4220.(in Chinese)
    [4] Peng N B, Sun B, Huang J Z, et al. Study on the seismic performance of small-diameter bolts reinforced in grottoes[J]. Advances in Civil Engineering, 2021, 2021(1): 1-12.
    [5] Chen F L, Xu H, Zhou W, et al. Three-dimensional deformation monitoring and simulations for the preventive conservation of architectural heritage a case study of the Angkor wat temple, Cambodia[J]. GIScience & Remote Sensing, 2021, 58(2): 217-234.
    [6] 邓小龙, 李丽慧. 基于三维激光扫描技术的复杂三维地质体建模方法[J]. 工程地质学报, 2017, 25(1): 209-214.Deng X L, Li L H. Refined modeling of complex geological body based on there-dimensional laser scanning technique[J]. Journal of Engineering Geology, 2017, 25(1): 209-214.(in Chinese)
    [7] 高相波, 李丽慧, 廖小辉, 等. 基于逆向工程建模方法的危岩体稳定性数值模拟分析[J]. 工程地质学报, 2020, 28(3): 557-564.Gao X B, Li L H, Liao X H, et al. Numerical simulation analysis of stability of unstable rock mass with reverse engineering modeling method[J]. Journal of Engineering Geology, 2020, 28(3): 557-564.(in Chinese)
    [8] Meng Z G, Fan F Z, Cui X B, et al. Numerical modeling and stability analysis of surrounding rock of Yuanjue cave[J]. Geofluids, 2021,1(11): 6652271.
    [9] Wei P, Li A, Hou M, et al. Equal proportion reproduction method of grotto based on point cloud[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 4215: 1215-1219.
    [10] 赵夫群, 周明全. 层次化点云去噪算法[J]. 光学 精密工程, 2020, 28(7): 1618-1625.Zhao F Q, Zhou M Q. Hierarchical point cloud denoising algorithm[J]. Optics and Precision Engineering, 2020, 28(7): 1618-1625.(in Chinese)
    [11] Fleishman S,Drori I,Cohen-Or D. Bilateral mesh denoising[J]. ACM Transactions on Graphics,2003,22(3):950-953.
    [12] 曹爽, 岳建平, 马文. 基于特征选择的双边滤波点云去噪算法[J]. 东南大学学报(自然科学版), 2013, 43(S2): 351-354.Cao S, Yue J P, Ma W. Bilateral filtering denoise algorithm for point cloud based on feature selection [J]. Journal of Southeast University (Natural Science Edition), 2013, 43(S2): 351-354.(in Chinese)
    [13] 王晓辉, 吴禄慎, 陈华伟. 基于法向量距离分类的散乱点云数据去噪[J]. 吉林大学学报(工学版), 2020, 50(1): 278-288.Wang X H, Wu L S, Chen H W. Denoising of scattered point cloud data based on normal vector distance classification[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 278-288.(in Chinese)
    [14] 燕学锋, 王金华, 任伟中. 大足石刻保护工程举要[M]. 武汉: 中国地质大学出版社, 2019.Yan X F, Wang J H, Ren W Z. The main points of Dazu Rock Carvings protection project [M]. Wuhan: China University of Geosciences Press, 2019. (in Chinese)
    [15] 袁小翠, 吴禄慎, 陈华伟. 尖锐特征曲面散乱点云法向估计[J]. 光学 精密工程, 2016, 24(10): 2581-2588.Yuan X C, Wu L S, Chen H W. Normal estimation of scattered point cloud with sharp feature[J]. Optics and Precision Engineering, 2016, 24(10): 2581-2588.(in Chinese)
    [16] 夏春华, 施滢, 尹文庆. 基于TOF深度传感的植物三维点云数据获取与去噪方法[J]. 农业工程学报, 2018, 34(6): 168-174.Xia C H, Shi Y, Yin W Q. Obtaining and denoising method of three-dimensional point cloud data of plants based on TOF depth sensor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6): 168-174.(in Chinese)
    [17] 张铭凯, 梁晋, 刘烈金, 等. 基于SR300体感器人体扫描点云的去噪方法[J]. 中南大学学报(自然科学版), 2018, 49(9): 2225-2231.Zhang M K, Liang J, Liu L J, et al. Denoising method of body scanning point cloud obtained by SR300[J]. Journal of Central South University (Science and Technology), 2018, 49(9): 2225-2231.(in Chinese)
    [18] Digne J, de Franchis C. The bilateral filter for point clouds[J]. Image Processing on Line, 2017, 7: 278-287.
    [19] 杨璐璟. 点云数据的压缩算法研究-以数字地质博物馆为例[D]. 长沙:中南大学,2014.Yang L J. Research on compression algorithm of point cloud data-taking digital geological museum ad an example[D]. Changsha:Central South University,2014.(in Chinese)
    [20] 蔡钦镒, 陈中贵, 曹娟. 基于最优传输理论的高质量点云重采样方法[J]. 计算机学报, 2022, 45(1): 135-147.Cai Q Y, Chen Z G, Cao J. High-quality point cloud resampling method based on optimal transport theory[J]. Chinese Journal of Computers, 2022, 45(1): 135-147.(in Chinese)
    [21] 夏开宗, 陈从新, 刘秀敏, 等. 基于岩体波速的Hoek-Brown准则预测岩体力学参数方法及工程应用[J]. 岩石力学与工程学报, 2013, 32(7): 1458-1466.Xia K Z, Chen C X, Liu X M, et al. Estimation of rock mass mechanical parameters based on ultrasonic velocity of rock mass and hoek-brown criterion and its application to engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1458-1466.(in Chinese)
    [22] 杨建华, 代金豪, 姚池, 等. 岩石高边坡爆破开挖损伤区岩体力学参数弱化规律研究[J]. 岩土工程学报, 2020, 42(5): 968-975.Yang J H, Dai J H, Yao C, et al. Weakening laws of rock mass properties in blasting excavation damage zone of high rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 968-975.(in Chinese)
    [23] 任伟中.大足石刻大佛湾水害治理工程对石刻岩体稳定性评估研究报告[R]. 武汉:中国科学院武汉岩土力学研究所,2018.Ren W Z. Research report on the stability assessment of the rock mass in Dazu Rock Carvings dafo bay by the flood control project[R]. Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2018.(in Chinese)
    [24] Hoek E,Carranza-Torres C,Corkum B. Hoek-Brown failure criterion-2002 edition[J]. Proceedings of North American Rock Mechanics Society and Tunnelling Association of Canada(NARMS-Tac),2002,1(1): 267-273.
    [25] 丁万涛, 刘金慧, 张乐文. 不同锈蚀度时海底隧道锚固支护结构岩锚相互作用分析[J]. 中南大学学报(自然科学版), 2014, 45(5): 1642-1652.Ding W T, Liu J H, Zhang L W. Analysis on interaction of rock-bolts in anchorage support structure of subsea tunnel at different corrosion levels[J]. Journal of Central South University (Science and Technology), 2014, 45(5): 1642-1652.(in Chinese)
    [26] 崔宏环, 刘建坤, 张立群, 等. 含纵向裂隙的悬挑式危岩稳定性分析方法研究[J]. 铁道工程学报, 2016, 33(1): 11-15.Cui H H, Liu J K, Zhang L Q, et al. A stability analysis method of the overhanging crag with longitudinal cracks[J]. Journal of Railway Engineering Society, 2016, 33(1): 11-15.(in Chinese)
    [27] 袁维, 郑传厂, 王伟, 等. 基于悬臂梁理论的倒悬危岩体地震弯折崩塌评价方法研究[J]. 工程科学与技术, 2018, 50(3): 233-239.Yuan W, Zheng C C, Wang W, et al. Evaluation method of earthquake-induced bending collapse of the upside-down dangerous rock-mass based on cantilever beam theory[J]. Advanced Engineering Sciences, 2018, 50(3): 233-239.(in Chinese)
    引证文献
引用本文

张理想,邹红宇,黄蕾,张景科,刘建辉,李黎,陈卉丽,韩秀兰.基于双边滤波石质文物逆向建模及其稳定性分析[J].重庆大学学报,2024,47(10):46-60.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-15
  • 在线发布日期: 2024-11-14
文章二维码