臂式高空作业平台变幅系统建模与模型降阶
作者:
作者单位:

1.长沙理工大学 汽车与机械工程学院,长沙 410114;2.湖南星邦智能装备股份有限公司,长沙 410600

作者简介:

牛轲磊(1998—),男,硕士研究生,主要从事液压系统建模与仿真研究,(E-mail)1964788342@qq.com。

通讯作者:

贺尚红,博士,教授,主要从事机械动力学系统模型辨识及液压系统振动与噪声控制技术等研究,(E-mail)heshanghong@126.com。

中图分类号:

TP391.7

基金项目:

国家自然科学基金资助项目 (51875048);长沙市科技重大专项资助项目(kh2301017)。


Modeling and model reduction of the luffing system for boom-type aerial work platforms
Author:
Affiliation:

1.School of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China;2.Sinoboom Intelligent Equipment Co., Ltd., Changsha 410600, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (51875048), and the Major Science and Technology Special Project of Changsha (kh2301017).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以某臂式高空作业平台臂架变幅液压系统为研究对象,利用AMESim软件建立了该系统的液压仿真模型,并通过机液联合仿真的方式验证了模型的准确性。使用一种线性频域分析为主、活性能量指数分析为辅的方法,对液压模型进行简化降阶,将模型中固有频率较高且活性指数较低的子部件进行移除或修改,并对部分无法移除的高频模型进行参数调整,使该模型满足实时仿真的需要。实验表明:经降阶处理后得到的液压系统仿真模型,在保证较高还原度的前提下,不仅降低了运算时间还满足了实时仿真要求。

    Abstract:

    This study focuses on the boom luffing hydraulic system of boom-type aerial work platforms. A hydraulic simulation model is developed using AMESim software, and its accuracy is verified through mechanical-hydraulic co-simulation. To optimize the model for real-time simulation, a linear frequency domain analysis method, supplemented by active energy index analysis, is used to simplify and reduce the model’s order. Components with higher natural frequencies and lower activity indices are either removed or modified, and parameters of certain high-frequency models that could not be removed are adjusted to achieve real-time simulation compatibility. The reduced-order hydraulic system model significantly reduces computational time while maintaining a high level of fidelity, meeting real-time simulation requirements effectively.

    参考文献
    [1] 杜朝阳, 李昆, 刘红. 实时仿真技术在飞机液压综合管理系统中的应用[J]. 航空科学技术, 2016, 27(9): 71-74.Du Z Y, Li K, Liu H. Application of real-time simulation on the integrated management of aircraft hydraulic system[J]. Aeronautical Science & Technology, 2016, 27(9): 71-74.(in Chinese)
    [2] 李艳红, 唐成师, 赵吕懿, 等. 复杂系统实时仿真的可视化建模方法研究[J]. 空天防御, 2020, 3(4): 30-37.Li Y H, Tang C S, Zhao L Y, et al. Visual modeling method study of complex system real-time simulation[J]. Air & Space Defense, 2020, 3(4): 30-37.(in Chinese)
    [3] 王琛, 孟建辉, 王毅, 等. 含多种分布式电源的直流微电网硬件在环仿真系统设计与实现[J]. 电力系统保护与控制, 2018, 46(9): 146-154.Wang C, Meng J H, Wang Y, et al. Design and implementation of hardware in-the-loop simulation system for DC microgrid with multiple DG units[J]. Power System Protection and Control, 2018, 46(9): 146-154.(in Chinese)
    [4] 蒋鑫, 郑磊. 基于AMESim的车辆HIL系统实时仿真工程[C]//2016 Siemens PLM Software 仿真与试验技术大会论文集. 北京: 中国机械出版社, 2016:1-4.Jiang X, Zheng L. Real-time simulation engineering of vehicle HIL system based on AMESim[C] //Proceedings of 2016 Siemens PLM Software Simulation and Test Technology Conference. Beijing: China Machine Press,2016:1-4. (in Chinese)
    [5] Hao X L, Fu L J, Ma F, et al. Real-time simulation hardware-in-the-loop test platform for DC integrated power system containing a large number of switches[C]//2022 IEEE 5th International Electrical and Energy Conference (CIEEC). IEEE, 2022: 1600-1605.
    [6] 王鹏, 杨绍普, 刘永强, 等. 高速列车磁流变半主动悬挂控制策略研究[J]. 力学学报, 2023, 55(4): 1004-1018.Wang P, Yang S P, Liu Y Q, et al. Research on control strategy of magnetorheological semi-active suspension for high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 1004-1018.(in Chinese)
    [7] 高宁, 李晓明. 基于组合式仪器平台和Simulink的半实物仿真系统研究[J]. 软件工程, 2020, 23(3): 9-13.Gao N, Li X M. Research on HIL simulation system based on the combined instrument platform and Simulink[J]. Software Engineering, 2020, 23(3): 9-13.(in Chinese)
    [8] Neme? R, Ruba M, Raia R, et al. HiL testing of Li-Ion battery pack based on real-time virtual vehicle model[C]//2021 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2021: 1-6.
    [9] Ciornei S M, Neme? R O, Ruba M, et al. Real-time simulation of a complete electric vehicle based on NI VeriStand integration platform[C]//2018 International Conference and Exposition on Electrical and Power Engineering (EPE). IEEE, 2018: 107-112.
    [10] Li G Q, Ding Y T, Feng Y, et al. AMESim simulation and energy control of hydraulic control system for direct drive electro-hydraulic servo die forging hammer[J]. International Journal of Hydromechatronics, 2019, 2(3):203-225.
    [11] 张国强, 杨耀东. 基于AMESim的典型滑阀阀口快速建模方法[J]. 机床与液压,2018,46(23):134-138.Zhang G Q, Yang Y D. Modeling method for typical spool valve port based on AMESim[J]. Machine Tool & Hydraulics, 2018, 46(23): 134-138.(in Chinese)
    [12] 王瑜. 负载敏感变量泵的动态特性研究[J]. 科技风, 2019(6): 148-149.Wang Y. Study on dynamic characteristics of load-sensitive variable displacement pump[J]. Technology Wind, 2019(6): 148-149.(in Chinese)
    [13] 赵兴平, 常凯, 秦成, 等. 基于VL motion与AMESim的飞机起落架及舱门收放控制联合仿真[J]. 液压气动与密封, 2022, 42(1): 43-47.Zhao X P, Chang K, Qin C, et al. Co-simulation of aircraft landing gear and door extraction/retraction control based on VL motion and AMESim[J]. Hydraulics Pneumatics & Seals, 2022, 42(1): 43-47.(in Chinese)
    [14] 刘印, 张奥, 夏兴兰. 高压泵实时模型的研究[C]//2016 Siemens PLM Software 仿真与试验技术大会论文集. 北京: 中国机械出版社, 2016:1-8.Liu Y, Zhang A, Xia X L. The Research of high-pressure pump real time model[C]//Proceedings of 2016 Siemens PLM Software Simulation and Test Technology Conference. Beijing: China Machine Press, 2016:1-8. (in Chinese)
    [15] 王骥超, 郭迎清. 基于AMESim模型的实时化简[J]. 航空计算技术, 2012, 42(4): 72-76.Wang J C, Guo Y Q. Model reduction based on AMESim for realtime simulation[J]. Aeronautical Computing Technique, 2012, 42(4): 72-76.(in Chinese)
    [16] Neme? R O, Ciornei S M, Ruba M, et al. Real-time simulation of scaled propulsion unit for light electric vehicles[J]. Electrical Engineering, 2020, 102(1): 43-52.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

牛轲磊,贺尚红,杨庚,黄毅.臂式高空作业平台变幅系统建模与模型降阶[J].重庆大学学报,2025,48(1):33-44.

复制
分享
文章指标
  • 点击次数:143
  • 下载次数: 71
  • HTML阅读次数: 62
  • 引用次数: 0
历史
  • 收稿日期:2023-04-05
  • 在线发布日期: 2025-02-19
文章二维码