基于卷积神经网络的高层建筑智能控制算法研究
作者:
作者单位:

武汉理工大学 道路桥梁与结构工程湖北省重点实验室,武汉 430070

作者简介:

刘康生(1995—),男,硕士研究生,主要从事土木工程振动控制的研究,(E-mail)2281585945@qq.com。

通讯作者:

涂建维,男,教授,博士生导师, (E-mail)tujianwei@whut.edu.cn。

中图分类号:

TB381

基金项目:

国家自然科学基金资助项目(51978550);国家重点研发计划资助项目(2018YFC0705601);中央高校基本科研业务费专项资金资助项目(2019-YB-024)。


Research on intelligent structural control algorithm for high-rise buildings based on one-dimensional convolution neural network
Author:
Affiliation:

Hubei Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(51978550), Key Research Plan of Ministry of Science and Technology(2018YFC0705601), Fundamental Research Funds for the Central Universities(2019-YB-024).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    浅层学习神经网络对高维数据进行预测时,会出现预测精度低,泛化能力差等问题。为此,在一维卷积神经网络(one-dimensional convolutional neural networks,1D-CNN)和Deep Dream视觉算法的基础上,提出一种基于CNN深度学习网络的高层建筑智能控制算法,并完成高精度网络模型训练和1D-CNN数据特征可视化;以20层benchmark模型为对象,研究了不同工况下1D-CNN深度学习智能控制算法的减震效果,并与BP(back propagation,BP)和RBF(radial basis function,RBF)等浅层学习进行对比。结果表明,1D-CNN凭借一维卷积和池化特性,可自动提取数据深层次特征并对海量数据进行降维处理;在外界激励作用下,1D-CNN控制器加速度和位移最高减震率分别为69.0%和55.6%,控制性能远高于BP和RBF;改变激励作用后,3种控制器控制性能均有所降低,但1D-CNN性能降幅最小且减震率最高,说明1D-CNN具备更好的泛化性能。

    Abstract:

    Traditional shallow neural networks exhibit low prediction accuracy and poor generalization when handling high-dimensional data. To solve these problems, this study proposes an intelligent control algorithm for high-rise buildings based on one-dimensional convolutional neural networks(1D-CNN) and the deep dream visualization algorithm. The proposed method enables high-precision network model training and visualizes data features through 1D-CNN. Using a 20-story benchmark model as a case study, the damping performance of the 1D-CNN-based intelligent control algorithm was analyzed under different conditions and compared with back propagation(BP) and radial basis function(RBF) algorithms. Results show that 1D-CNN can effectively extract deep data features and reduce the dimensionality of massive datasets by virtue of one-dimensional convolution and pooling operations. Under external excitation, the maximum damping rates for acceleration and displacement achieved by the 1D CNN controller were 69.0% and 55.6% respectively, significantly outperforming BP and RBF. Although the control performance of all algorithms decreased under modified excitation conditions, the 1D-CNN consistently exhibited superior performance and the best generalization capability.

    参考文献
    [1] 阎维明, 周福霖, 谭平. 土木工程结构振动控制的研究进展[J]. 世界地震工程, 1997, 13(2): 8-20.Yan W M, Zhou F L, Tan P. Research progress of vibration control of civil engineering structures[J]. World Earthquake Engineering, 1997, 13(2): 8-20.(in Chinese)
    [2] 王中生, 何汉林, 廖晓昕. 线性系统极点配置的神经网络算法[J]. 华中科技大学学报(自然科学版), 2002, 30(1): 4-5, 8.Wang Z S, He H L, Liao X X. A neural network algorithm for pole assignment in linear systems[J]. Journal of Huazhong University of Science and Technology, 2002, 30(1): 4-5, 8.(in Chinese)
    [3] 郭空明, 江俊. 悬臂Kagome夹心板独立模态空间振动控制研究[J]. 振动与冲击, 2015, 34(2): 55-60.Guo K M, Jiang J. Independent modal space vibration control of cantilever Kagome sandwich plate[J]. Journal of Vibration and Shock, 2015, 34(2): 55-60.(in Chinese)
    [4] 宗长富, 朱天军, 麦莉, 等. 基于全局增益调度控制的重型半挂车主动侧倾控制算法[J]. 机械工程学报, 2008, 44(10): 138-144.Zong C F, Zhu T J, Mai L, et al. Active roll control algorithm of heavy tractor semi-trailer based on global gain scheduling control[J]. Chinese Journal of Mechanical Engineering, 2008, 44(10): 138-144.(in Chinese)
    [5] 李志军, 刘正洋, 邓子辰. 结构基于RBF神经网络的变结构控制研究[J]. 地震工程与工程振动, 2012, 32(6): 136-143.Li Z J, Liu Z Y, Deng Z C. New variable structure control for buildings using RBF neural network[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(6): 136-143.(in Chinese)
    [6] Ramezani M, Bathaei A, Ghorbani-Tanha A K. Application of artificial neural networks in optimal tuning of tuned mass dampers implemented in high-rise buildings subjected to wind load[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(4): 903-915.
    [7] Zhang C, Zhang A M, Zhang H, et al. RBF neural networks sliding mode controller design for static var compensator[C]//2015 34th Chinese Control Conference (CCC). July 28-30, 2015, Hangzhou, China. IEEE, 2015: 3501-3506.
    [8] 涂建维, 瞿伟廉. 升船机地震鞭梢效应基于神经网络预测的MR智能半主动控制[J]. 噪声与振动控制, 2006, 26(2): 20-23.Tu J W, Qu W L. Semi-active control over roof MR intelligent isolation system in ship lift based on RBF network prediction[J]. Noise and Vibration Control, 2006, 26(2): 20-23.(in Chinese)
    [9] 李宏男, 金峤. 遗传BP神经网络主动AMD对偏心结构的减震控制[J]. 地震工程与工程振动, 2003, 23(2): 134-142.Li H N, Jin Q. AMD active control for irregular buildings using GA-BP neural network[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(2): 134-142.(in Chinese)
    [10] 涂建维, 高经纬, 李召, 等. 基于长短时记忆网络的结构智能控制算法研究[J]. 华中科技大学学报(自然科学版), 2019, 47(12): 110-115.Tu J W, Gao J W, Li Z, et al. Research on structural intelligent control algorithms based on long short-term memory networks[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(12): 110-115.(in Chinese)
    [11] Sarraf S, Tofighi G, Sarraf S, et al. Classification of Alzheimer’s disease using fMRI data and deep learning convolutional neural networks[EB/OL]. 2016: 1603.08631.https://arxiv.org/abs/1603.08631v1.
    [12] Wu X Y, Peng Z K, Ren J S, et al. Rub-impact fault diagnosis of rotating machinery based on 1-D convolutional neural networks[J]. IEEE Sensors Journal, 2020, 20(15): 8349-8363.
    [13] Xu Y, Li S L, Zhang D Y, et al. Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images[J]. Structural Control and Health Monitoring, 2018, 25(2): e2075.
    [14] 张浩, 刘振娟, 李宏光, 等. 基于关联变量时滞分析卷积神经网络的生产过程时间序列预测方法[J]. 化工学报, 2017, 68(9): 3501-3510.Zhang H, Liu Z J, Li H G, et al. Process time series prediction based on application of correlated process variables to CNN time delayed analyses[J]. CIESC Journal, 2017, 68(9): 3501-3510.(in Chinese)
    [15] Liu T W, Xu H, Ragulskis M, et al. A data-driven damage identification framework based on transmissibility function datasets and one-dimensional convolutional neural networks: verification on a structural health monitoring benchmark structure[J]. Sensors, 2020, 20(4): 1059.
    [16] Yang H H, Meng C, Wang C. Data-driven feature extraction for analog circuit fault diagnosis using 1-D convolutional neural network[J]. IEEE Access, 2020, 8: 18305-18315.
    [17] Wu H J, Chen J P, Liu X R, et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. Journal of Lightwave Technology, 2019, 37(17): 4359-4366.
    [18] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
    [19] Tang Z Y, Chen Z C, Bao Y Q, et al. Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring[J]. Structural Control and Health Monitoring, 2019, 26(1): e2296.
    [20] 欧进萍. 结构振动控制: 主动、半主动和智能控制[M]. 北京: 科学出版社, 2003.Ou J P. Structural vibration control: active, semi-active and intelligent control[M]. Beijing: Science Press, 2003.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘康生,涂建维,张家瑞,李召.基于卷积神经网络的高层建筑智能控制算法研究[J].重庆大学学报,2025,48(1):66-75.

复制
分享
文章指标
  • 点击次数:122
  • 下载次数: 70
  • HTML阅读次数: 30
  • 引用次数: 0
历史
  • 收稿日期:2024-01-23
  • 在线发布日期: 2025-02-19
文章二维码