基于改进多尺度AOD-Net的图像去雾算法
作者:
作者单位:

1.南昌工程学院,信息工程学院,南昌 330000;2.南昌工程学院,机械工程学院,南昌 330000

作者简介:

徐玥(1999—),女,硕士研究生,主要从事图像处理方向研究,(E-mail)xuyue19991117@163.com。

通讯作者:

黄志开(1969—),男,教授,硕士生导师,(E-mail)1625305627@qq.com。

基金项目:

国家重点研发计划(2019YFB1704502);国家自然科学基金(61472173);江西省研究生创新专项资金(yc2023-s995,YJSCX202312)。


An image dehazing algorithm based on improved multi-scale AOD-Net
Author:
Affiliation:

1.School of Information Engineering, Nanchang Institute of Technology, Nanchang 330000, P. R. China;2.School of Mechanical Engineering, Nanchang Institute of Technology, Nanchang 330000, P. R. China

Fund Project:

Supported by the National Key R&D Program of China(2019YFB1704502), Natinal Natural Science Foundation of China(61472173), and Jiangxi Province Graduate Innovation Special Fund(yc2023-s995,YJSCX202312).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对当前去雾算法效率不高、细节恢复较差等问题,提出一种改进多尺度AOD-Net(all in one dehazing network)的去雾算法。通过增加注意力机制、调整网络结构和改变损失函数这3方面的改进,增强网络的特征提取和恢复能力。模型的第1层增加空间金字塔注意力 (spatial pyramid attention,SPA)机制,使网络在特征提取过程中避免冗余信息。将网络改成拉普拉斯金字塔型结构,使模型能够提取不同尺度的特征,保留特征图的高频信息。使用多尺度结构相似性 (multi-scale structural similarity,MS-SSIM)+L1损失函数替换原有的损失函数,提高模型保留结构的能力。实验结果表明,本方法去雾效果更好,细节更丰富。在定性可视化评价方面,去雾图像效果优于原网络。在定量评估层面,与原网络相比PSNR值提升了2.55 dB,SSIM值提升了0.04,IE熵值增加了0.18,这些数值指标充分验证了本算法的出色去雾效果和稳定性。

    Abstract:

    To address the current issues of inefficient dehazing algorithms and poor detail recovery, we propose an improved multi-scale AOD-Net (all in one dehazing network) algorithm. This algorithm enhances the network’s feature extraction and recovery capabilities through three key improvements: adding an attention mechanism, adjusting the network structure, and modifying the loss function. Specifically, the first layer of the model incorporates the SPA (spatial pyramid attention) mechanism, which enables the network to avoid redundant information during feature extraction. Furthermore, the network structure is modified into a Laplacian pyramid structure, allowing the model to extract features at different scales and preserve high-frequency information in the feature maps. Additionally, the original loss function is replaced with the MS-SSIM (multi-scale structural similarity)+L1 loss function, thereby enhancing the model’s ability to retain structural information. Experimental results demonstrate that this method achieves better dehazing effects and richer details. Subjectively, the dehazed images exhibit superior quality compared to those produced by the original network. Objectively, compared to the original network, there is a 2.55 dB improvement in PSNR, a 0.04 increase in SSIM value, and a 0.18 increase in IE entropy value, which proves the algorithm’s excellent dehazing effect and stability.

    参考文献
    [1] 吴迪, 朱青松. 图像去雾的最新研究进展[J]. 自动化学报, 2015, 41(2): 221-239.Wu D, Zhu Q S. The latest research progress of image dehazing[J]. Acta Automatica Sinica, 2015, 41(2): 221-239. (in Chinese)
    [2] 郭璠, 蔡自兴, 谢斌, 等. 图像去雾技术研究综述与展望[J]. 计算机应用, 2010, 30(9): 2417-2421.Guo F, Cai Z X, Xie B, et al. Review and prospect of image dehazing techniques[J]. Journal of Computer Applications, 2010, 30(9): 2417-2421. (in Chinese)
    [3] 禹晶, 徐东彬, 廖庆敏. 图像去雾技术研究进展[J]. 中国图象图形学报, 2011, 16(9): 1561-1576.Yu J, Xu D B, Liao Q M. Image defogging:a survey[J]. Journal of Image and Graphics, 2011, 16(9): 1561-1576. (in Chinese)
    [4] Land E H, McCann J J. Lightness and retinex theory [J]. Journal of the Optical Society of America, 1971, 61(1): 1-11.
    [5] 祝培, 朱虹, 钱学明, 等. 一种有雾天气图像景物影像的清晰化方法[J]. 中国图象图形学报, 2004, 9(1): 124-128.Zhu P, Zhu H, Qian X M, et al. An image clearness method for fog[J]. Journal of Image and Graphics, 2004, 9(1): 124-128. (in Chinese)
    [6] 禹晶, 李大鹏, 廖庆敏. 基于物理模型的快速单幅图像去雾方法[J]. 自动化学报, 2011, 37(2): 143-149.Yu J, Li D P, Liao Q M. Physics-based fast single image fog removal[J]. Acta Automatica Sinica, 2011, 37(2): 143-149. (in Chinese)
    [7] He K, Sun J, Tang X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
    [8] 梅英杰, 宁媛, 陈进军. 融合暗通道先验和MSRCR的分块调节图像增强算法[J]. 光子学报, 2019, 48(7): 124-135.Mei Y J, Ning Y, Chen J J. Block-adjusted image enhancement algorithm combining dark channel prior with MSRCR[J]. Acta Photonics Sinica, 2019, 48(7): 124-135. (in Chinese)
    [9] Cai B, Xu X, Jia K, et al. Dehazenet: an end-to-end system for single image haze removal[J]. IEEE transactions on image processing, 2016, 25(11): 5187-5198.
    [10] Qin X, Wang Z, Bai Y, et al. FFA-Net: feature fusion attention network for single image dehazing[C]//AAAI conference on artificial intelligence. Palo Alto, California USA: AAAI, 2020, 34(7): 11908-11915.
    [11] Li B, Peng X, Wang Z, et al. Aod-net: all-in-one dehazing network[C]//IEEE international conference on computer vision. Venice, Italy: IEEE, 2017: 4770-4778.
    [12] 张宸嘉, 朱磊, 俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用, 2021, 57(20): 64-72.Zhang C J, Zhu L, Yu L. Review and analysis of image defogging algorithm[J]. Computer Engineering and Applications, 2021, 57(20): 64-72. (in Chinese)
    [13] Guo J, Ma X, Sansom A, et al. Spanet: spatial pyramid attention network for enhanced image recognition[C]//2020 IEEE International Conference on Multimedia and Expo (ICME). London, United Kingdom: IEEE, 2020: 1-6.
    [14] Lai W S, Huang J B, Ahuja N, et al. Deep laplacian pyramid networks for fast and accurate super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 624-632.
    [15] Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 3(1): 47-57.
    [16] McCartney E J. Optics of the atmosphere: scattering by molecules and particles[J]. Physics Today, 1977, 30(5): 76.
    [17] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7132-7141.
    [18] 李永福, 崔恒奇, 朱浩, 等. 一种基于改进AOD-Net的航拍图像去雾算法[J]. 自动化学报, 2022, 48(6): 1543-1559.Li Y F, Cui H Q, Zhu H, et al. A defogging algorithm for aerial image with improved AOD-Net[J]. Acta Automatica, 2022, 48(6): 1543-1559. (in Chinese)
    [19] Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C]//37th Asilomar Conference on Signals, Systems & Computers. Pacific Grove, CA, USA: IEEE, 2003, 2: 1398-1402.
    [20] 王道累, 张天宇. 图像去雾算法的综述及分析[J]. 图学学报, 2020, 41(6): 861-870.Wang D L, Zhang T Y. Review and analysis of image defogging algorithm[J]. Journal of Graphics, 2020, 41(6): 861-870. (in Chinese)
    [21] Hore A, Ziou D. Image quality metrics: PSNR vs. SSIM[C]//2010 20th International Conference on Pattern Recognition. NW Washington, DC, United States: IEEE, 2010: 2366-2369.
    [22] Sara U, Akter M, Uddin M S. Image quality assessment through FSIM, SSIM, MSE and PSNR: a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18.
    [23] Choi L K, You J, Bovik A C. Referenceless prediction of perceptual fog density and perceptual image defogging[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3888-3901.
    相似文献
    引证文献
引用本文

徐玥,黄志开,王欢,曾志超,王景玉,叶元龙.基于改进多尺度AOD-Net的图像去雾算法[J].重庆大学学报,2025,48(2):50-61.

复制
分享
文章指标
  • 点击次数:127
  • 下载次数: 71
  • HTML阅读次数: 31
  • 引用次数: 0
历史
  • 收稿日期:2024-07-11
  • 在线发布日期: 2025-03-04
文章二维码