模块化热激活墙体性能优化与经济性分析
作者:
作者单位:

1.安徽建筑大学 建筑与规划学院,合肥 230601;2.合肥工业大学 建筑与艺术学院,合肥 230601

作者简介:

陈萨如拉(1989—),女,博士,讲师,主要从事建筑节能研究,(E-mail)sarul@tju.edu.cn。

通讯作者:

杨洋,男,博士,讲师,主要从事低碳建筑设计与建筑节能研究,(E-mail)yangyang@hfut.edu.cn。

中图分类号:

TU86

基金项目:

国家自然科学基金(52208103);安徽省高校优秀科研创新团队(2022AH010021)。


Optimization of efficiency and energy-saving analysis of modular thermo-activated walls
Author:
Affiliation:

1.School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei 230601, P. R. China;2.College of Architecture and Art, Hefei University of Technology, Hefei 230601, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China(52208103), and Anhui Province University Outstanding Scienti?c Research and Innovation Team (2022AH010021).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对制约热激活类墙体注热效率提升的低品位热量集中堆积问题,提出了一种内部设有特定孔道并用于填充热扩散性填料的模块化热激活墙体(modular thermo-activated wall, MTAW)。建立了MTAW动态传热模型,基于寒冷地区冬季气象条件对比分析了MTAW与2种参考墙体性能差异,探讨了填料腔倾角(θ值)、填料腔几何尺寸(ab值)和填料导热系数(λf值)对节能潜力与经济性的影响。结果表明:墙体内部增设填料腔并填充热扩散性材料对于总运行能耗和运行费用节省效果显著,相比2种参考墙体,当MTAW填料腔长轴横置且ab12时,总运行能耗分别减少2.60%和14.13%;相比2种参考墙体,MTAW总运行费用分别平均减少12.41%和50.04%;填料腔长轴倾向室内侧时,供热能耗随θ值增大呈现先减小后增加的趋势,各项性能指标在θL为60°时更优;ab值和λf值与总运行能耗和运行费用成反比,供热能耗和运行燃气费用降低率在λf为12λc时分别为3.03%和34.53%。

    Abstract:

    A modular thermo-activated wall (MTAW) with specialized internal cavities for thermal diffusivity fillers was proposed to solve the problem of low-grade heat accumulation, which restricts the heat injection efficiency of thermo-activated walls. A dynamic heat transfer model of the MTAW was established., and its performance was compared with two reference walls under typical winter conditions in a cold climate zone. The study examined the effects of the filler cavity inclination angle(θ), cavity geometry ratio(ab), and thermal conductivity of the filling material(λf) on energy-saving potential and economic performance. Results show that incorporating filler cavities and thermal diffusing materials significantly reduces total operational energy consumption and costs. Compared with the reference walls, when the the MTAW filler cavity’s long axis is oriented transversely with an ab ratio of 12, the total operational energy consumption decreases by 2.60% and 14.13%, respectively. Compared with the reference walls, operational costs are reduced by 12.41% and 50.04%, respectively. When the long axis of the filler cavity is inclined toward the room side, heating energy consumption initially decreases and then increases as θ rises, with optimal performance observed at θL=60°. Additionally, ab and λf are inversely proportional to both total operational energy consumption and costs. For example, when λf is 12λc, heating energy consumption and gas operating costs are reduced by up to 3.03% and 34.53%, respectively.

    参考文献
    [1] Nagaoka A, Ota Y, Sakai K, et al. Performance evaluation and spectrum-based analysis of a wall-mounted photovoltaic system for zero-energy building[J]. Renewable Energy, 2021, 174:147-156.
    [2] Wei H, Yang D, Du J, et al. Field experiments on the effects of an earth-to-air heat exchanger on the indoor thermal environment in summer and winter for a typical hot-summer and cold-winter region[J]. Renewable Energy, 2021, 167: 530-541.
    [3] 张志刚, 苏珂, 姚万祥. 热管置入式墙体在实际建筑中的传热特性研究[J]. 太阳能学报, 2022, 43(10): 1-6.Zhang Z G, Su K, Yao W X. Study on heat transfer characteristics of wall implanted with heat pipes in actual buildings[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 1-6. (in Chinese)
    [4] 朱丽, 杨洋, 陈萨如拉, 等. 热激活相变复合墙体动态热特性与节能潜力[J]. 重庆大学学报, 2018, 41(11): 42-52.Zhu L, Yang Y, Chen S, et al. Thermal performance and energy saving potential study on a thermo-activated PCM building system[J]. Journal of Chongqing University, 2018, 41(11): 42-52. (in Chinese)
    [5] 王厚华, 吴伟伟. 居住建筑外墙外保温厚度的优化分析[J]. 重庆大学学报, 2008, 31(8): 937-941.Wang H H, Wu W W. Optimizing insulation thickness of external walls for residential buildings[J]. Journal of Chongqing University, 2008, 31(8): 937-941. (in Chinese)
    [6] Altin M, Yildirim G ?. Investigation of usability of boron doped sheep wool as insulation material and comparison with existing insulation materials[J]. Construction and Building Materials, 2022, 331: 127303.
    [7] Jiang S H, Zha F H, Zhao Y X, et al. Thermal performance of double-layer pipe-embedded envelope with low-grade energy for heating[J]. Journal of Building Engineering, 2023, 77: 107489.
    [8] 张志刚, 于广全. 基于热管置入式墙体的室内热环境研究[J]. 太阳能学报, 2019, 40(9): 2642-2648.Zhang Z G, Yu G Q. Study of indoor thermal environment using wall implanted with heat pipes[J]. Acta Energiae Solaris Sinica, 2019, 40(9): 2642-2648. (in Chinese)
    [9] Romaní J, Cabeza L F, de Gracia A. Development and experimental validation of a transient 2D numeric model for radiant walls[J]. Renewable Energy, 2018, 115: 859-870.
    [10] Shen Z L, Shrestha S, Howard D, et al. Machine learning-assisted prediction of heat fluxes through thermally anisotropic building envelopes[J]. Building and Environment, 2023, 234: 110157.
    [11] Biswas K, Shrestha S, Hun D A, et al. Thermally anisotropic composites for improving the energy efficiency of building envelopes[J]. Energies, 2019, 12(19): 3783.
    [12] Chen S, Yang Y, Chang T X. Uncertainty and parameter ranking analysis on summer thermal characteristics of the hydronic thermal barrier for low-energy buildings[J]. Building Simulation, 2023, 16(1): 27-49.
    [13] 中华人民共和国住房和城乡建设部. 民用建筑供暖通风与空气调节设计规范 附条文说明: GB 50736—2012[S]. 北京: 中国建筑工业出版社, 2012.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Design code for heating ventilation and air conditioning of civil buildings: GB 50736—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [14] Zhu L, Yang Y, Chen S, et al. Numerical study on the thermal performance of lightweight temporary building integrated with phase change materials[J]. Applied Thermal Engineering, 2018, 138: 35-47.
    [15] 中国气象局气象信息中心气象资料室, 清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.Meteorological Data Department of the Meteorological Information Center of China Meteorological Administration, Department of Building Science, Tsinghua University. Special meteorological data set for thermal environment analysis of buildings in China[M]. Beijing: China Architecture & Building Press, 2005. (in Chinese)
    [16] 杨洋, 陈萨如拉. 嵌管式热激活复合墙体综合能量特性全局敏感性研究[J]. 太阳能学报, 2023, 44(7): 248-256.Yang Y, Chen S. Global sensitivity analysis on thermal performances of pipe-embedded thermo-activated composite wall[J]. Acta Energiae Solaris Sinica, 2023, 44(7): 248-256. (in Chinese)
    [17] Wu W, Li X T, You T, et al. Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions[J]. Renewable Energy, 2015, 84: 74-88.
    [18] 北京市发展和改革委员会. 北京市发展和改革委员会关于调整本市销售电价有关事项的通知[EO/OL]. (2020-11-30)[2023-08-15]. https://www.beijing.gov.cn/zhengce/zhengcefagui/202012/t20201201_2153982.html.Beijing Municipal Commission of Development and Reform. Notice on adjusting electricity prices of Beijing Municipal Commission of Development and Reform[EO/OL]. (2020-11-30)[2023-08-15]. https://www.beijing.gov.cn/zhengce/zhengcefagui/202012/t20201201_2153982.html.(in Chinese)
    [19] 北京市发展和改革委员会. 关于调整本市居民用天然气销售价格的通知[EO/OL]. (20119-11-07) [2023-08-15]. https://www.beijing.gov.cn/zhengce/zhengcefagui/201911/t20191108_484529.html.Beijing Municipal Commission of Development and Reform. Notice on adjusting the prices of natural gas for residents[EO/OL]. (20119-11-07) [2023-08-15]. https://www.beijing.gov.cn/zhengce/zhengcefagui/201911/t20191108_484529.html.(in Chinese)
    相似文献
    引证文献
引用本文

陈萨如拉,陈天航,杨洋.模块化热激活墙体性能优化与经济性分析[J].重庆大学学报,2025,48(2):74-85.

复制
分享
文章指标
  • 点击次数:139
  • 下载次数: 59
  • HTML阅读次数: 29
  • 引用次数: 0
历史
  • 收稿日期:2023-10-02
  • 在线发布日期: 2025-03-04
文章二维码