多腔中空薄壁方钢管混凝土短柱轴压性能研究
作者:
作者单位:

西南石油大学 土木工程与测绘学院,成都 610500

作者简介:

张潇(1997—),男,硕士研究生,主要从事钢管混凝土力学性能方面的研究,(E-mail)289290215@qq.com。

通讯作者:

龚俊(1993—),男,博士,讲师,主要从事钢结构抗震和组合结构方面的研究,(E-mail)jun.gong@swpu.edu.cn。

中图分类号:

TU 398.9

基金项目:

四川省青年科技创新团队项目(2019JDTD0017);中国博士后科学基金(2022M722639);四川省自然科学基金(2023NSFSC0889)。


Axial compressive behavior of thin-walled multi-cavity concrete-filled double-skin (square inner and square outer) steel tubular stub columns
Author:
Affiliation:

School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, P. R. China

Fund Project:

Supported by the Scientific Innovation Group for Youths of Sichuan Province (2019JDTD0017), China Postdoctoral Science Foundation (2022M722639), and Natural Science Foundation of Sichuan Province, China (2023NSFSC0889).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了提升中空夹层钢管混凝土(concrete-filled double-skin steel tubular,CFDST)短柱的轴压性能,提出并设计了薄壁方套方中空夹层多腔钢管混凝土(multi-cavity concrete-filled double-skin tubular,MCFDST)短柱,对其轴压力学性能进行了试验研究。试验试件包括15个方套方MCFDST短柱试件和3个方套方CFDST短柱试件。以混凝土抗压强度、外钢管宽厚比、空心率和是否设置拉肋为参数,通过分析试件的变形、荷载-位移曲线、破坏现象和延性系数,探究了各参数对试件的极限承载力、失效模式和延性的影响。试验结果显示:混凝土抗压强度从58 MPa提升至90 MPa,试件承载力提升46%,延性系数最高降低74%;外钢管宽厚比从39降低到29,试件承载力提升12.5%,延性系数明显增大;空心率从0.31增大到0.38,试件承载力提升了1.3%,延性系数仅提升1%;增设拉肋使构件承载力提升14.2%,延性系数最高提升282%。其次,利用试验数据验证了数值建模方法的有效性和模型的正确性,并开展了大量有限元参数分析,讨论了现行规范对该短柱轴压承载力的适用性,发现日本规范AIJ的预测公式可以精确估计MCFDST短柱轴压承载力。

    Abstract:

    To improve the axial performance of concrete-filled double-skin steel tubular(CFDST) stub columns, a novel thin-walled multi-cavity concrete-filled double-skin tubular(MCFDST) stub column was proposed. Experimental investigations were conducted to evaluate the axial compressive behavior of these columns. A total of fifteen MCFDST stub columns and three CFDST stub columns were designed and fabricated, with four key parameters examined: concrete compressive strength(CCS), width-to-thickness ratio(WTR) of the outer tube, hollow ratio(HR), and the presence of tensile ribs. The study assessed deformation, load-displacement behavior, damage patterns, and ductility coefficient to determine the ultimate bearing capacity, failure mode, and ductility performance of the columns. Experimental results show that increasing the CCS from 58 MPa to 90 MPa enhances the bearing capacity by 46%, while reducing the ductility coefficient by 74%. A decrease in WTR from 39 to 29 results in a 12.5% improvement in bearing capacity alongside a notable increase in ductility coefficient. The HR increase from 0.31 to 0.38 yields marginal improvements in bearing capacity(1.3%) and ductility coefficient(1.0%). Notably, the presence of tensile ribs significantly increases the bearing capacity and ductility coefficient by 14.2% and 282%, respectively. Moreover, the experimental data validated the effectiveness and accuracy of numerical modeling, which facilitated extensive finite element parameter analyses. The applicability of current design methods for predicting axial bearing capacity was also discussed, indicating that the prediction formula in Japanese standard AIJ is suitable for estimating the axial compressive bearing capacity of MCFDST stub columns.

    参考文献
    [1] Han L H, Li W, Bjorhovde R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members[J]. Journal of Constructional Steel Research, 2014, 100: 211-228.
    [2] Zhao X L, Grzebieta R, Elchalakani M. Tests of concrete-filled double skin CHS composite stub columns[J]. Steel and Composite Structures, 2002, 2(2): 129-146.
    [3] 陶忠, 韩林海, 黄宏. 圆中空夹层钢管混凝土柱力学性能研究[J]. 土木工程学报, 2004, 37(10): 41-51.Tao Z, Han L H, Huang H. Mechanical behaviour of concrete-filled double skin steel tubular columns with circular cular sections[J]. China Civil Engineering Journal, 2004, 37(10): 41-51. (in Chinese)
    [4] Tao Z, Han L H, Zhao X L. Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns[J]. Journal of Constructional Steel Research, 2004, 60(8): 1129-1158.
    [5] Yang H, Lam D, Gardner L. Testing and analysis of concrete-filled elliptical hollow sections[J]. Engineering Structures, 2008, 30(12): 3771-3781.
    [6] Zhao X L, Grzebieta R. Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes[J]. Thin-Walled Structures, 2002, 40(2): 199-213.
    [7] 谢力, 陈梦成, 张安哥. 矩形中空夹层钢管混凝土短柱力学性能的数值分析[J]. 华东交通大学学报, 2005, 22(1): 4-6.Xie L, Chen M C, Zhang A G. Numerical analysis of double skin concrete-filled steel tubular short columns with rectangular section[J]. Journal of East China Jiaotong University, 2005, 22(1): 4-6. (in Chinese)
    [8] 谢力, 林博洋, 袁方, 等. 方中空夹层钢管混凝土柱压-弯-剪受力性能试验研究[J]. 建筑结构学报, 2015, 36(S1): 230-234.Xie L, Lin B Y, Yuan F, et al. Experimental study on compressive-flexural-shear behavior of concrete-filled steel tubular columns with square hollow sandwich[J]. Journal of Building Structures, 2015, 36(S1): 230-234. (in Chinese)
    [9] 陶忠, 韩林海, 黄宏. 方中空夹层钢管混凝土偏心受压柱力学性能的研究[J]. 土木工程学报, 2003, 36(2): 33-40, 51.Tao Z, Han L H, Huang H. Concrete-filled double skin steel tubular column with square section under eccentric loads[J]. China Civil Engineering Journal, 2003, 36(2): 33-40, 51. (in Chinese)
    [10] Hassanein M F, Elchalakani M, Karrech A, et al. Behaviour of concrete-filled double-skin short columns under compression through finite element modelling: SHS outer and SHS inner tubes[J]. Structures, 2018, 14: 358-375.
    [11] 黄宏, 朱彦奇, 陈梦成, 等. 矩形中空夹层再生混凝土钢管短柱轴压试验研究[J]. 实验力学, 2016, 31(1): 67-74.Huang H, Zhu Y Q, Chen M C, et al. Experimental investigation on axial compression of rectangular recycled concrete-filled double-skin steel tube short column[J]. Journal of Experimental Mechanics, 2016, 31(1): 67-74. (in Chinese)
    [12] Tao Z, Han L H, Wang Z B. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns[J]. Journal of Constructional Steel Research, 2005, 61(7): 962-983.
    [13] Tao Z, Uy B, Han L H, et al. Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression[J]. Thin-Walled Structures, 2009, 47(12): 1544-1556.
    [14] 王志滨, 陶忠. 带肋薄壁方钢管混凝土轴压短柱设计探讨[J]. 工业建筑, 2007, 37(12): 13-17.Wang Z B, Tao Z. Design of concrete-filled thin-walled stiffened steel tubular stub columns with square sections[J]. Industrial Construction, 2007, 37(12): 13-17. (in Chinese)
    [15] Liang W, Dong J F, Wang Q Y. Mechanical behaviour of concrete-filled double-skin steel tube (CFDST) with stiffeners under axial and eccentric loading[J]. Thin-Walled Structures, 2019, 138: 215-230.
    [16] 徐阳. 带肋方中空夹层钢管混凝土短柱轴压性能研究[D]. 四川: 西南石油大学, 2023.Xu Y. Axial compressive behavior of stiffened thin-walled concrete-filled double-skin (square inner and square outer) steel tubular stub columns[D]. Chengdu: Southwest Petroleum University, 2023. (in Chinese)
    [17] Shen L, Ding M, Feng C, et al. Axial compressive behavior of thin-walled concrete-filled double-skin steel tubular stub columns with connecting strips[J]. Journal of Structural Engineering, 2022, 148(2): 04021267.
    [18] Ding M, Shen L, Yang B. FE simulation of a new type of concrete-filled double skin steel tube with stiffeners under axial loading[M]// Lecture Notes in Civil Engineering. Springer Singapore, 2021, 101: 1725-1735.
    [19] Wang F Y, Young B F A, Gardner L. Experimental study of square and rectangular CFDST sections with stainless steel outer tubes under axial compression[J]. Journal of Structural Engineering-ASCE, 2019, 145(11) 1-15.
    [20] 国家市场监督管理总局, 国家标准化管理委员会. 金属材料 拉伸试验 第1部分: 室温试验方法: GB/T 228.1—2021[S]. 北京: 中国标准出版社, 2021.State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Metallic materials: tensile testing: part 1: method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021. (in Chinese)
    [21] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
    [22] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
    [23] Tao Z, Han L H, Wang D Y. Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete[J]. Thin-Walled Structures, 2008, 46(10): 1113-1128.
    [24] Rabbat B G, Russell H G. Friction coefficient of steel on concrete or grout[J]. Journal of Structural Engineering, 1985, 111(3): 505-515.
    [25] Abdel-Rahman N, Sivakumaran K S. Material properties models for analysis of cold-formed steel members[J]. Journal of Structural Engineering, 1997, 123(9): 1135-1143.
    [26] Tao Z, Wang Z B, Yu Q. Finite element modelling of concrete-filled steel stub columns under axial compression[J]. Journal of Constructional Steel Research, 2013, 89: 121-131.
    [27] Ba?ant Z P, Becq-Giraudon E. Statistical prediction of fracture parameters of concrete and implications for choice of testing standard[J]. Cement and Concrete Research, 2002, 32(4): 529-556.
    [28] Lai Z C, Varma A H. High-strength rectangular CFT members: database, modeling, and design of short columns[J]. Journal of Structural Engineering, 2018, 144(5): 154-171.
    [29] Minimum design loads for buildings and other structures: ASCE/SEI 7-10[S]. Reston, Virginia: American Society of Civil Engineers, 2010.
    [30] Eurocode 4: design of composite steel and concrete structures: part 1-1: general rules and rules for buildings: DS/EN 1994-1-1[S]. Brussels: European Committee for Standardization, 2007.
    [31] Steel, concrete and composite bridges, Part 5: Code of practice for design of composite bridges: BS5400-5[S]. London, UK: British Standards Institutions, 2005.
    [32] 中华人民共和国住房和城乡建设部. 钢管混凝土混合结构技术标准: GB/T 51446—2021[S]. 北京: 中国建筑工业出版社, 2021.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for concrete-filled steel tubular hybrid structures: GB/T 51446—2021[S]. Beijing: China Architecture & Building Press, 2021. (in Chinese)
    [33] 福建住房和城乡建设厅. 钢管混凝土结构技术规程: DBJ/T13-51-2020[S]. 北京: 北京建筑工业出版社, 2020.Fujian Department of Housing and Urban Rural Development. Technical specification for concrete-filled steel tubular structures: DBJ/T13-51-2020[S]. Beijing: China Architecture & Building Press, 2020. (in Chinese)
    [34] Recommendations for design and construction of concrete filled steel tubular structures: AIJ-CFT 2008[S]. Tokyo: Architectural Institute of Japan, 2008.
    [35] Li Z,Gong J, Shao Y, et al. Axial compressive behaviors of multi-cavity concrete-filled double-skin tubular stub columns[J]. Journal of Constructional Steel Research, 2024, 216: 108619.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张潇,龚俊,邵永波,黄伟峰,李紫君.多腔中空薄壁方钢管混凝土短柱轴压性能研究[J].重庆大学学报,2025,48(2):86-101.

复制
分享
文章指标
  • 点击次数:121
  • 下载次数: 51
  • HTML阅读次数: 21
  • 引用次数: 0
历史
  • 收稿日期:2024-01-25
  • 在线发布日期: 2025-03-04
文章二维码