机械活化强化硫酸锌溶液中锌粉净化除镉
作者:
作者单位:

1.昆明理工大学 冶金与能源工程学院,昆明 650093;2.云南驰宏锌锗股份有限公司,云南 曲靖 655000;3.四川盛屯锌锗科技有限公司,四川 雅安 625000

作者简介:

崔武江(1995—),硕士研究生,主要从事湿法冶金学方向的研究,(E-mail)2210031140@qq.com。

通讯作者:

李兴彬,教授,博士,主要从事湿法冶金学方向的研究,(E-mail)lixingbin2018@163.com。

中图分类号:

TF819.2

基金项目:

国家自然科学基金(52164039);云南省科技厅重大科技专项计划项目(202202AG050025);云南省应用基础研究计划项目(202001AT070079)。


Mechanical activation enhances cadmium purification from zinc powder in zinc sulfate solution
Author:
Affiliation:

1.School of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China;2.Yunnan Chihong Zinc Germanium Co., Ltd., Qujing, Yunnan 655000, P. R. China;3.Sichuan Shengtun Technology Co., Ltd., Ya’an, Sichuan 625000, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (52164039), Major Science and Technology Special Program of Yunnan Provincial Department of Science and Technology(202202AG050025), and Yunnan Provincial Applied Basic Research Program(202001AT070079).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [5]
  • | | |
  • 文章评论
    摘要:

    锌粉单耗高和净化除镉渣中镉含量低是硫酸锌溶液锌粉置换除镉存在的共性难题,其核心原因是锌粉被产物层包裹降低其反应活性。基于此提出了机械活化强化硫酸锌溶液两级锌粉逆流置换除镉新方法,一级添加较低系数的锌粉产出高镉品位的净化渣,二级添加较高系数的锌粉,以控制硫酸锌溶液中镉达到溶液净化质量要求。研究结果表明,在总锌粉添加系数为1.02、反应温度60 ℃、反应时间60 min的条件下,当一级锌粉添加系数为0.9,二级锌粉添加系数为1.2时,一级净化后液中镉质量浓度由反应前的1 530 mg/L降低至60~70 mg/L,一级净化产出的镉渣中镉含量富集至81.54%,锌含量小于10%;二级净化后液中镉质量浓度降低至2~5 mg/L,净化渣中的镉含量为16.09%,锌含量为56.04%。一级净化渣主要物相为单质镉,二级净化渣的主要物相是未反应的锌和部分单质镉。与传统一次净化工艺相比,通过流体的剪应力和机械活化作用,破坏了锌粉表面的包裹层,消除了锌粉表面的包裹现象,提高了锌粉利用效率,降低了锌粉消耗,提高了净化渣中的镉含量。

    Abstract:

    Excessive zinc powder consumption and low cadmium content in purified cadmium removal residues are persistent challenges in cadmium removal from zinc sulfate solution via zinc powder replacement. The primary cause is the reduced reactivity of zinc powder due to encapsulation by product layers. To address this, a novel two-stage countercurrent replacement method with mechanical activation was proposed. This method involves adding low-coefficient zinc powder in the first stage to facilitate cadmium enrichment and high-coefficient zinc powder in the second stage to achieve the desired cadmium removal from zinc sulfate solutions, meeting solution purification standards. Experimental results show that, under optimal conditions (total zinc powder addition coefficient of 1.02, reaction temperature of 60 °C, and reaction time of 60 min), using a primary zinc powder addition coefficient of 0.9 and a secondary zinc powder addition coefficient of 1.2 reduced cadmium concentration in the solution from 1 530 mg/L to 60-70 mg/L after the first stage. This process enriched the cadmium content in the primary purification residue to 81.54%, with zinc content below 10%. Following secondary purification, cadmium concentration in the solution further decreased to 2 mg/L to 5 mg/L, while the purification residue contained 16.09% cadmium and 56.04% zinc. Phase analysis revealed that the primary purification residue predominantly consisted of elemental cadmium, whereas the secondary residue contained unreacted zinc and some elemental cadmium. Compared with traditional primary purification methods, the introduction of fluid shear stress and mechanical activation effectively disrupted the encapsulation layer on zinc powder surfaces, eliminating the the wrapping effect, enhancing zinc powder utilization efficiency, reducing consumption, and increasing cadmium content in the purification residues.

    参考文献
    [1] 刘永帅, 张旭. 湿法炼锌净化除钴工艺现状及发展趋势[J]. 矿冶, 2012, 21(3): 65-69.Liu Y S, Zhang X. Current situation and development of process of purification of cobalt during zinc hydrometallurgy[J]. Mining and Metallurgy, 2012, 21(3): 65-69. (in Chinese)
    [2] 王达. 浅析湿法炼锌净化除钴的影响因素[J]. 中国有色冶金, 2012, 41(5): 11-14.Wang D. Influencing factors on cobalt removal by purification in zinc hydrometallurgy[J]. China Nonferrous Metallurgy, 2012, 41(5): 11-14. (in Chinese)
    [3] 吴钧, 曾鹏, 周中华, 等. 常规两段浸出法提高锌焙烧矿中铜回收率的研究[J]. 铜业工程, 2022(6): 74-78.Wu J, Zeng P, Zhou Z H, et al. Study on improving copper recovery of zinc roasted ore by conventional two-stage leaching[J]. Copper Engineering, 2022(6): 74-78. (in Chinese)
    [4] 蒋继穆. 我国锌冶炼现状及近年来的技术进展[J]. 中国有色冶金, 2006, 35(5): 19-23.Jiang J M. Current status and recent technical progress of zinc smelting in China[J]. China Nonferrous Metallurgy, 2006, 35(5): 19-23. (in Chinese)
    [5] Zhou P, Li D M, Chen Z. Mass transfer process in replacement-column purification device in zinc hydrometallurgy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8): 2660-2664.
    [6] 李剑利. 海绵镉置换过程中的生产控制[J]. 有色矿冶, 2013, 29(1): 39-41.Li J L. The production control in the process of the sponge cadmium displacement[J]. Non-Ferrous Mining and Metallurgy, 2013, 29(1): 39-41. (in Chinese)
    [7] 肖泓, 甄勇, 李春林, 等. 硫酸锌溶液锌粉逆流置换除镉及直接制备海绵镉[J]. 有色金属工程, 2023, 13(5): 53-60.Xiao H, Zhen Y, Li C L, et al. Removal of cadmium from zinc sulfate solution by zinc powder countercurrent replacement and direct preparation of sponge cadmium[J]. Nonferrous Metals Engineering, 2023, 13(5): 53-60. (in Chinese)
    [8] 杨晓冬, 张新智, 杨金勇. 锌浮渣循环利用除镉的探索研究[J]. 世界有色金属, 2019(23): 5-6.Yang X D, Zhang X Z, Yang J Y. Study on the recycling of zinc dross to remove cadmium[J]. World Nonferrous Metals, 2019(23): 5-6. (in Chinese)
    [9] 廉彩会, 姜仕发, 董凯, 等. 锌浮渣处理的研究与实践[J]. 中国有色冶金, 2013, 42(6): 23-24, 51.Lian C H, Jiang S F, Dong K, et al. Research and practice of zinc dross processing[J]. China Nonferrous Metallurgy, 2013, 42(6): 23-24, 51. (in Chinese)
    [10] 牛文敏, 马高峰, 周冲冲, 等. 锰粉代替锌粉去除硫酸锌溶液中铜镉研究[J]. 湖南有色金属, 2021, 37(2): 32-34.Niu W M, Ma G F, Zhou C C, et al. Removal of copper and cadmium from zinc sulfate solution by manganese powder instead of zinc powder[J]. Hunan Nonferrous Metals, 2021, 37(2): 32-34. (in Chinese)
    [11] 刘洪嶂, 张建学, 彭文彩, 等. 氧化锌烟尘湿法提取过程中金属锰粉除镉的研究[J]. 中国有色冶金, 2019, 48(1): 53-55, 59.Liu H Z, Zhang J X, Peng W C, et al. Study on cadmium removal by metal manganese powder in zinc oxide dust hydrometallurgical extraction process[J]. China Nonferrous Metallurgy, 2019, 48(1): 53-55, 59. (in Chinese)
    [12] Sole K C, Hiskey J B. Solvent extraction characteristics of thiosubstituted organophosphinic acid extractants[J]. Hydrometallurgy, 1992, 30(1/2/3): 345-365.
    [13] Abou-El-Sherbini K. Separation and preconcentration in a batch mode of Cd(II), Cr(III, VI), Cu(II), Mn(II, VII) and Pb(II) by solid-phase extraction by using of silica modified with N-propylsalicylaldimine[J]. Talanta, 2002, 58(2): 289-300.
    [14] Mellah A, Benachour D. The solvent extraction of zinc and cadmium from phosphoric acid solution by di-2-ethyl hexyl phosphoric acid in kerosene diluent[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(8): 684-690.
    [15] van der Pas V, Dreisinger D B. A fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives[J]. Hydrometallurgy, 1996, 43(1/2/3): 187-205.
    [16] 曾懋华, 奚长生, 彭翠红, 等. 冶锌工业废渣中镉的回收利用[J]. 韶关学院学报(自然科学版), 2003, 24(12): 56-59.Zeng M H, Xi C S, Peng C H, et al. Reclaim and utilization of cadmium from the annealled zinc industry sediment[J]. Journal of Shaoguan University (Natrual Science), 2003, 24(12): 56-59. (in Chinese)
    [17] 何静, 王夏阳, 叶龙刚, 等. 微电流作用下锌板电置换提镉新工艺[J]. 中南大学学报(自然科学版), 2016, 47(3): 711-716.He J, Wang X Y, Ye L G, et al. A new process of electrical replacement for cadmium extraction by zinc plate under micro current[J]. Journal of Central South University (Science and Technology), 2016, 47(3): 711-716. (in Chinese)
    [18] 林海, 李真, 董颖博, 等. 修复钒镉复合污染水体的菌株分离及性能[J]. 中南大学学报(自然科学版), 2021, 52(5): 1418-1426.Lin H, Li Z, Dong Y B, et al. Isolation and characterization of bacteria for vanadium and cadmium polluted water remediation[J]. Journal of Central South University (Science and Technology), 2021, 52(5): 1418-1426. (in Chinese)
    [19] 唐巾尧, 王云燕, 徐慧, 等. 铜冶炼多源固废资源环境属性的解析[J]. 中南大学学报(自然科学版), 2022, 53(10): 3811-3826.Tang J Y, Wang Y Y, Xu H, et al. Analysis of resources and environmental attributes of multisource solid wastes from copper smelting processes[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 3811-3826. (in Chinese)
    [20] 陈子罗, 张建良, 刘征建, 等. 含锌粉尘团块脱锌行为研究[J]. 中南大学学报(自然科学版), 2017, 48(7): 1704-1711.Chen Z L, Zhang J L, Liu Z J, et al. Research on dezincification of zinc-bearing dusts composite briquettes[J]. Journal of Central South University (Science and Technology), 2017, 48(7): 1704-1711. (in Chinese)
    [21] 王云燕, 何紫彤, 唐巾尧, 等. 铜冶炼脱硫石膏渣的环境稳定性与重金属释放机制[J]. 中南大学学报(自然科学版), 2023, 54(2): 562-576.Wang Y Y, He Z T, Tang J Y, et al. Long-term environmental stability and heavy metals release mechanism of desulfurized gypsum sludge from copper smelter[J]. Journal of Central South University (Science and Technology), 2023, 54(2): 562-576. (in Chinese)
    [22] 袁贵有. 从铜镉渣中回收镉的试验研究[J]. 有色金属再生与利用, 2006(12): 21-22.Yuan G Y. Experimental research of recovering cadmium from slag bearing copper and cadmium[J]. Non-Ferrous Metals Recycling and Utilization, 2006(12): 21-22. (in Chinese)
    [23] 李秉龙, 银涛, 帅丽芳, 等. 镉污染及其防治对策[J]. 中国保健营养, 2013(7): 790-791.Li B L, Yin T, Shuai L F, et al. Cadmium pollution and its prevention and control countermeasures[J]. China Health Care & Nutrition, 2013(7): 790-791. (in Chinese)
    [24] 汤顺贤, 陈科彤, 万宁, 等. 从铜镉渣中提取海绵镉的试验研究[J]. 矿冶, 2014, 23(5): 65-68.Tang S X, Chen K T, Wan N, et al. Study on extraction of sponge cadmium from copper cadmium slag[J]. Mining and Metallurgy, 2014, 23(5): 65-68. (in Chinese)
    [25] 何良惠, 李自强, 李升章, 等. 从铜镉渣中提取海绵镉的研究[J]. 无机盐工业, 1991, 23(2): 31-35.He L H, Li Z Q, Li S Z, et al. Study on extraction of sponge cadmium from copper-cadmium slag[J]. Inorganic Chemicals Inoustry, 1991, 23(2): 31-35. (in Chinese)
    [26] 邹小平, 汪胜东, 蒋训雄, 等. 铜镉渣提取镉绵工艺研究[J]. 有色金属: 冶炼部分, 2010(6): 4.Zou X P, Wang S D, Jiang X X, et al. Process optimization research of extracting cadmium sponge from copper and cadmium residue[J]. Nonferrous Metals: Smelting Part, 2010(6): 4. (in Chinese)
    [27] 李佳佳, 赵相玉, 马立群, 等. 球磨对ZnO的结构、形貌和电化学性能的影响[J]. 无机材料学报, 2012, 27(6): 580-584.Li J J, Zhao X Y, Ma L Q, et al. Effect of mechanical milling on structure, morphology and electrochemical performance of zinc oxide powders[J]. Journal of Inorganic Materials, 2012, 27(6): 580-584. (in Chinese)
    [28] Yang F Q, Wu C. Mechanism of mechanical activation for spontaneous combustion of sulfide minerals[J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 276-282.
    [29] Setoudeh N, Paydar M H, Sajjadnejad M. Effect of high energy ball milling on the reduction of nickel oxide by zinc powder[J]. Journal of Alloys and Compounds, 2015, 623: 117-120.
    [30] Li J H, Jiang Q, Yu J, et al. Optimizing the size distribution of zinc borosilicate glass powder by organic solvent and tetradecylphosphonic based wet milling[J]. Materials Letters, 2023, 349: 134745.
    [31] Pontini L, Leitch J A, Browne D L. Mechanochemical Simmons-Smith cyclopropanation via ball-milling-enabled activation of zinc(0)[J]. Green Chemistry, 2023, 25(11): 4319-4325.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔武江,曾鹏,甄勇,李兴彬,魏昶,罗兴国,周子豪.机械活化强化硫酸锌溶液中锌粉净化除镉[J].重庆大学学报,2025,48(2):110-122.

复制
分享
文章指标
  • 点击次数:125
  • 下载次数: 36
  • HTML阅读次数: 29
  • 引用次数: 0
历史
  • 收稿日期:2023-12-04
  • 在线发布日期: 2025-03-04
文章二维码