CNN和双向编码解码LSTM融合的起重机械健康预测方法
CSTR:
作者:
作者单位:

重庆大学 大数据与软件学院,重庆 400044

作者简介:

陈宇豪(1997—),男,硕士研究生,主要从事特种设备健康分析预测等方向研究。

通讯作者:

杨正益(1979—),男,副教授,硕士生导师,(E-mail) zyyang@cqu.edu.cn。

中图分类号:

基金项目:

国家重点研发计划(2024YFC3014900)。


Health prediction of lifting machinery based on CNN and bidirectional LSTM with encoder-decoder architecture
Author:
Affiliation:

School of Big Data & Software Engineering, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by the National Key R&D Program of China(2024YFC3014900).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对起重机械设备健康状态多时间单位步长预测中出现的监测数据时间跨度小、数据量密集、特征多维、没有标签的问题,提出一种结合卷积神经网络(convolutional neural network,CNN)和双向编码解码长短期循环神经网络(bidirectional long short-term memory with encoder-decoder,ED-BLSTM)的起重机械设备健康预测方法。对监测数据进行时序排列,在保证相同输入-输出时间步长尺寸情况下对数据集切分重组,将处理后数据集输入到卷积神经网络,提取主要特征,得到多维矩阵。采用基于编码解码器的双向长短期循环神经网络对多维矩阵进行训练,建立起重机械多时间单位步长的目标预测模型,达到长期预测起重机械设备健康状态的目的。对比实验表明,所提方法的验证损失最多降低0.474%,最少降低0.097%;预测损失最多降低1.411%,最少降低1.230%,实际预测性能有较大提高,对工业起重机械健康预测技术的发展有积极意义。

    Abstract:

    To address challenges in multi-time-step health prediction for lifting machinery, such as short data spans, high-frequency measurements, multi-dimensional feature complexity, and limited labeled data, this paper proposes a hybrid method combining convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) networks with an encoder-decoder architecture (ED-BLSTM). The method begins by chronologically organizing monitoring data, followed by segmenting and reconstructing the dataset while maintaining consistent input-output time step sizes. The processed data is first fed into a CNN to extract the main features, generating a multi-dimensional feature matrix. This matrix then trains a BiLSTM network within an encoder-decoder framework to build a predictive model for multistep forecasting of machinery health status. Comparative experimental results show that the method reduces validation loss by 0.097% to 0.474% and prediction loss by 1.230% to 1.411%, outperforming current mainstream approaches. These results demonstrate its potential to advance predictive maintenance in industrial equipment.

    参考文献
    相似文献
    引证文献
引用本文

陈宇豪,杨正益,文俊浩.CNN和双向编码解码LSTM融合的起重机械健康预测方法[J].重庆大学学报,2025,48(6):74-83.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-11
  • 出版日期:
文章二维码