基于多尺度特征融合和边缘增强的多传感器融合3D目标检测算法
CSTR:
作者:
作者单位:

1.佛山仙湖实验室,广东 佛山 528200;2.武汉理工大学 现代汽车零部件技术湖北省重点实验室,武汉 430070;3.上汽通用五菱汽车股份有限公司,广西 柳州 545007

作者简介:

刘建国(1972—),男,硕士生导师,博士,主要从事智能车辆环境感知技术方向研究,(E-mail)ljg424@163.com。

通讯作者:

赵奕凡(1986—),男,高级工程师,博士,(E-mail)yifan.zhao@sgmw.com.cn。

中图分类号:

U469.79

基金项目:

佛山仙湖实验室先进能源科学与技术广东开放基金(XHD2020-003);广西科技尖峰计划(AA23062030)。


Multi-sensor fusion 3D target detection algorithm based on multi-scale feature fusion and edge enhancement
Author:
Affiliation:

1.Foshan Xianhu Laboratory, Foshan, Guangdong 528200, P. R. China;2.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, P. R. China;3.SAIC-GM-Wuling Automobile Co., Ltd., Liuzhou, Guangxi 545007, P. R. China

Fund Project:

Supported by Guangdong Open Fund Project of Advanced Energy Science and Technology of Foshan Xianhu Laboratory (XHD2020-003) and Guangxi Key Science and Technology R&D Program (AA23062030).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于BEV(bird’s eye view)多传感器融合的自动驾驶感知算法近年来取得重大进展,持续促进自动驾驶的发展。在多传感器融合感知算法研究中,多视角图像向BEV视角的转换和多模态特征融合一直是BEV感知算法的重点和难点。笔者提出MSEPE-CRN(multi-scale feature fusion and edge and point enhancement-camera radar net),一种用于3D目标检测的相机与毫米波雷达融合感知算法,利用边缘特征和点云提高深度预测的精度,实现多视角图像向BEV特征的精确转换。同时,引入多尺度可变形大核注意力机制进行模态融合,解决因不同传感器特征差异过大导致的错位。在nuScenes开源数据集上的实验结果表明,与基准网络相比,mAP提升2.17%、NDS提升1.93%、mATE提升2.58%、mAOE提升8.08%、mAVE提升2.13%,该算法可有效提高车辆对路面上运动障碍物的感知能力,具有实用价值。

    Abstract:

    BEV (bird’s eye view)-based multi-sensor fusion perception algorithms for autonomous driving have made significant progress in recent years and continue to contribute to the development of autonomous driving. In the research of multi-sensor fusion perception algorithms, multi-view image-to-BEV conversion and multi-modal feature fusion have been the key challenges in BEV perception algorithms. In this paper, we propose MSEPE-CRN, a fusion sensing algorithm of camera and millimeter-wave radar for 3D target detection, which utilizes edge features and point clouds to improve the accuracy of depth prediction, and then realizes the accurate conversion of multi-view images to BEV features. Meanwhile, a multi-scale deformable large kernel attention mechanism is introduced for modal fusion to solve the misalignment problem due to the excessive difference of features from different sensors. Experimental results on the nuScenes open-source dataset show that compared to the baseline network, the proposed algorithm achieves improvements of 2.17% in mAP, 1.93% in NDS, 2.58% in mATE, 8.08% in mAOE, and 2.13% in mAVE. This algorithm can effectively improve the vehicle’s ability to perceive moving obstacles on the road, and has practical value.

    参考文献
    相似文献
    引证文献
引用本文

刘建国,陈文,赵奕凡,周琪,颜伏伍,尹智帅,郑灏,吴友华.基于多尺度特征融合和边缘增强的多传感器融合3D目标检测算法[J].重庆大学学报,2025,48(8):78-85.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-19
  • 出版日期:
文章二维码