基于ARMA车速预测的智能车交叉口强化学习决策研究
CSTR:
作者:
作者单位:

1.重庆大学 高端装备机械传动全国重点实验室,重庆 400044;2.北京航天发射技术研究所,北京 100076;3.成都壹为新能源汽车有限公司 成都 611730;4.重庆理工大学 车辆工程学院 重庆 400054

作者简介:

刘永刚(1982—),男,教授,博士研究生导师,主要从事智能车决策与控制、车辆变速传动及智能控制、新能源汽车动力系统优化与控制方向研究,(E-mail)andyliuyg@cqu.edu.cn。

通讯作者:

中图分类号:

基金项目:

重庆市技术创新与应用发展专项重大项目(CSTB2023TIAD-STX0035);四川省科技计划项目(2019YFG0528)。


Research on reinforcement learning-based autonomous vehicle decision-making at intersections using an ARMA speed forecasting model
Author:
Affiliation:

1.State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, P. R. China;2.Beijing Aerospace Launch Technology Research Institute, Beijing 100076, P. R. China;3.Chengdu Yiwei New Energy Vehicle Co., Ltd., Chengdu 611730, P. R. China;4.Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, P. R. China

Fund Project:

Supported by Chongqing Municipal Technological Innovation and Application Development Special Program (CSTB2023TIAD-STX0035) and Sichuan Science and Technology Funding Project (2019YFG0528).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决无信号交叉口的智能车决策控制问题,以双向单车道交叉口下两车合流工况为对象,采用强化学习方法开展研究,建立车辆状态空间到动作空间的映射。针对目前研究中环境车辆车速设置过于简单问题,以实际场景下采集的数据作为环境车辆的轨迹信息构建场景模型。基于自回归滑动平均模型对环境车辆的车速进行预测。结合智能车及预测的环境车辆车速时序信息建立先行让行决策模型计算本车参考车速,引入参考车速构建强化学习的奖励函数加速训练收敛速度。结果表明:所提出的强化学习模型具有较快收敛速度,训练得到的智能体在与不同驾驶风格的环境车辆博弈时能安全通过交叉口,为无信号交叉口智能车安全通行决策控制提供参考依据。

    Abstract:

    To address the challenge of autonomous vehicle decision-making and control at unsignalized intersections, this study investigates the merging behavior of two vehicles at a two-way single-lane intersection. Reinforcement learning is used to establish a mapping between the vehicle state space and action space for autonomous decision-making. To overcome the limitations of overly simplified speed settings in existing studies, real-world trajectory data of surrounding vehicles are used to construct an environmental traffic model. The autoregressive moving average (ARMA) model is applied to predict the speeds of surrounding vehicles. By integrating the predicted speed profiles with the autonomous vehicle’s motion parameters, a forward decision-making model is established to calculate reference speeds. These reference speeds are incorporated into the reinforcement learning reward function to accelerate training convergence. Experimental results show that the proposed model achieves rapid convergence, and the trained agent can safely navigate the intersection while interacting with surrounding vehicles exhibiting diverse driving behaviors. This work provides a reference framework for improving the safety and efficiency of autonomous vehicle decision-making at unsignalized intersections.

    参考文献
    相似文献
    引证文献
引用本文

喻志成,赵俊鹏,刘永刚,夏甫根,叶明.基于ARMA车速预测的智能车交叉口强化学习决策研究[J].重庆大学学报,2025,48(10):68-80.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-20
  • 出版日期:
文章二维码