土工试验教学中如何培养学生的不确定性思维
作者:
中图分类号:

G642.423;TU473

基金项目:

河北省高校新工科研究与实践项目(2017GJXGK003);河北省高等教育教学改革研究与实践项目(2017GJJG011)


Training undergraduates to think with uncertainty in mind through soil mechanics laboratory testing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土力学试验中测得的土性指标具有较大离散性,导致学生对试验结果缺乏信心。因此,有必要探讨如何在土工试验教学中培养学生的不确定性思维。为提高教学效果,结合统计语言R的绘图和科学计算功能,阐述土性指标统计特性。以颗粒分析、含水量、液塑限、渗透系数、压缩系数和剪切强度指标的多组平行试验结果为例说明不确定性的表述方法。采用概率密度分布曲线、非参数核密度估计、直方图、箱线图等对测试结果进行不确定性展示。该教学实践可以提高学生处理差异数据的综合判断与归纳能力。

    Abstract:

    Along with the inherent scattering in soil physical and mechanical parameters of laboratory testing, it is difficult for students to sustain their conviction in their own tests. It is necessary to explore how to train students' uncertainty thinking through soil mechanics laboratory testing. To improving teaching effect, statistical characteristics of soil parameters are expounded by the drawing and scientific computing functions of statistical programming language R. Multiple parallel experiments on various parameters, including particle size analysis, moisture content, liquid and plastic limits, permeability coefficient, compression coefficient and shear strength, are used to demonstrate how uncertainties can be quantified. Test results are presented using probability density distribution curves, non-parametric kernel density estimates, histograms, and box plots. Such teaching practice can enhance undergraduates' comprehensive judgment and inductive ability in handling inconsistent data.

    参考文献
    [1] 赵成刚, 曾巧玲. 如何用好土力学[J]. 力学与实践, 2002(6):54-56.
    [2] 冷伍明, 赵善锐. 土工参数不确定性的计算分析[J]. 岩土工程学报, 1995(2):68-74.
    [3] 张在明. 从学生到优秀的岩土工程师[C]//土力学教育与教学:第一届土力学教学研讨会论文集, 2006:3-15.
    [4] 辛军霞, 吴兴征, 方有亮,等. 基于R语言的岩土三轴剪切试验数据处理方法[J]. 工程质量,2017(3):71-76.
    [5] 中华人民共和国水利部. 土工试验规程:SL 237-1999[S]. 北京:中国水利水电出版社,1999.
    [6] R Development Core Team. R:A language and environment for statistical computing[R]. R Foundation for Statistical Computing, Vienna, Austria,2013.
    [7] Kaklamanos J, Elmy K T. Development of a geotechnical engineering software package in R and its implementation in the civil engineering curriculum[C]//American Society of Civil Engineers (ASCE) Geotechnical and Structural Engineering Congress 2016, Phoenix, Arizona, USA. 2016:635-647.
    [8] WU X Z. GeoRiskR:Data and functions for geotechnical risk assessment[R/OL].[2013-11-28]. https://r-forge.r-project.org/R/?group_id=1777 or http://xingzhengwu.com/downl/GeoRiskR2.1.pdf.
    [9] WU X Z. Implementing statistical fitting and reliability analysis for geotechnical engineering problems in R[J]. Georisk:Assessment and Management of Risk for Engineered Systems and Geohazards, 2017(2):173-188.
    [10] Daniell A. Geochemical monitoring of soil pollution from the MWS-5 gold tailings facility on the Farm Stilfontein[D]. Potchefstroom:North-West University,2015.
    [11] 李祯祥, 赵寿刚. 用微波炉测定土含水量的比较试验[J]. 防渗技术, 2000(3):5-10.
    [12] WU X Z. Quantifying the non-normality of shear strength of geomaterials[J]. European Journal of Environmental and Civil Engineering, 2017,22(3):NA.
    [13] Harison J A. Using the BS cone penetrometer for the determination of the plastic limit of soils[J]. Geotechnique, 1998, 38(3):433-438.
    [14] Silverman B W. Density Estimation for Statistics and Data Analysis[M]. London:Chapman and Hall, 1986.
    [15] 周光裕. 考虑参数相关性的隧道围岩稳定性分析[J]. 公路工程, 2017, 42(6):283-286.
    [16] WU X Z. Modelling dependence structures of soil shear strength data with bivariate copulas and applications to geotechnical reliability analysis[J]. Soils and Foundations, 2015, 55(5):1243-1258.
    [17] 周莉, 韩雪, 杨海涛. 应用型人才培养的土力学实验教学模式改革与实践[J]. 黑龙江高教研究, 2014(3):168-170.
    [18] 中华人民共和国住房和城乡建设部. 工程结构可靠性设计统一标准:GB 50153-2008[S]. 北京:中国建筑工业出版社,2008.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴兴征,方有亮,余莉,冯震,杜二霞.土工试验教学中如何培养学生的不确定性思维[J].高等建筑教育,2019,28(3):122-130.

复制
相关视频

分享
文章指标
  • 点击次数:830
  • 下载次数: 1158
  • HTML阅读次数: 673
  • 引用次数: 0
历史
  • 最后修改日期:2017-04-24
  • 在线发布日期: 2019-07-10
文章二维码