结构动力学中若干问题辨析
作者:
中图分类号:

TU311.3;G642.3

基金项目:

土木工程防灾国家重点实验室开放基金(SLDRCE15-01)


Analysis of several problems in structural dynamics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对结构动力学教学过程中运动方程建立、运动方程求解的若干问题进行讨论,主要包括动力学和静力学刚度系数的区别,频响函数和脉冲响应函数的Fourier变换条件及对动力反应的影响,滞后阻尼体系的频响函数等问题。仅考虑集中质量平动自由度的体系,动力学刚度系数是指平动自由度产生单位位移而转动自由度放松情况下所受的力,静力凝聚方法和单位位移法所得刚度系数是相同的;无论是无阻尼体系还是有阻尼体系,频响函数和脉冲响应函数的Fourier变化关系都精确成立;时域特解包含稳态振动和伴生自由振动,而频域特解仅为体系的稳态解,两者之间的差别主要在振动的初始阶段,自振频率越低,差别越大。对于滞后阻尼体系,负频率的频响函数应为正频率频响函数的共轭函数。

    Abstract:

    To discuss several problems in the process of establishing and solving equations of motion in structural dynamics teaching. It mainly includes the difference of stiffness coefficients between dynamic and static mechanics as well as their relationship by the static condensation, the Fourier transformation condition from impulse response function to frequency response function and their effect on dynamic response, the frequency response function of the hysteretic damping system. For the lumped-mass system with only translational degree of freedom, the stiffness in dynamics is the force required along DOF due to unit displacement at translational DOF and relaxation of rotational DOFs, and the stiffness coefficients obtained by the static condensation method and the unit displacement method are identical; Whether a system with damping or not, the Fourier transformation relationship between the frequency response function and the impulse response function is accurate; the particular solution includes steady-state vibration and free adjoint vibration in the time domain, however, only the steady-state vibration in the frequency domain. Their difference is evident for the initial stage of vibration. The difference is more noticeable for small natural frequency. For a system with hysteretic damping, the frequency response function of the negative frequency should be the conjugate function of that of the corresponding positive frequency.

    参考文献
    [1] 陈清军,李文婷.结构动力学课程多元化教学方法探讨[J].高等建筑教育,2015,24(2):47-52.
    [2] 鲁正,翁渝峰.中外土木工程防灾专业结构动力学课程比较研究[J].高等建筑教育,2018,27(4):13-17.
    [3] 潘旦光,丁民涛. 结构力学抽象理论实物化教学方法研究[J].高等建筑教育,2018,27(2):57-60.
    [4] 龙驭球,包世华,袁驷. 结构力学(I)[M]. 4版.北京:高等教育出版社,2018.
    [5] Chopra A K. Dynamics of Structures:Theory and Applications to Earthquake Engineering[M].New Jersey:Englewood Cliffs, Prentice-Hall, 1995.
    [6] Cammarata A, Sinatra R, MADDÌO P D. Static condensation method for the reduced dynamic modeling of mechanisms and structures[J]. Archive of Applied Mechanics, 2019, 89(10):2033-2051.
    [7] R.克拉夫,J.彭津.结构动力学[M].王光远,译. 北京:高等教育出版社,2006.
    [8] 俞载道.结构动力学基础[M].上海:同济大学出版社,1987.
    [9] Zhou L, Su Y S. Cyclic loading test on beam-to-column connections connecting SRRAC beams to RACFST columns[J]. International Journal of Civil Engineering,2018, 16(11):1533-1548.
    [10] Sheng M P, Guo Z W, Qin Q, et al. Vibration characteristics of a sandwich plate with viscoelastic periodic cores[J]. Composite Structures,2018, 206:54-69.
    [11] 潘旦光.结构力学(下)[M].北京:清华大学出版社,2016.
    [12] 桂子鹏,康盛亮.数学物理方程[M].上海:同济大学出版社,1987.
    [13] Ribeiro A M R, Maia N, Silva J M. Free and forced vibrations with viscous and hysteretic damping:a different perspective[C]//Proc. MZD-5th Int. Conf. Mechanics and Materials in Design, 2006.
    [14] Chen J T, You D W. An integral-differential equation approach for the free vibration of a SDOF system with hysteretic damping[J]. Advances in Engineering Software, 1999, 30(1):43-48.
    [15] 何钟怡. 复本构理论中的对偶原则[J]. 固体力学学报,1994(2):177-180.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘旦光,鲁文艳.结构动力学中若干问题辨析[J].高等建筑教育,2021,30(2):79-89.

复制
分享
文章指标
  • 点击次数:499
  • 下载次数: 0
  • HTML阅读次数: 938
  • 引用次数: 0
历史
  • 收稿日期:2020-02-07
  • 在线发布日期: 2021-05-11
文章二维码