大数据时代下研究生科研素质培养研究
DOI:
CSTR:
作者:
作者单位:

北京工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Study on the cultivation of postgraduates' scientific research quality in the era of big data
Author:
Affiliation:

Beijing University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    科研素质的提升是高校研究生培养的重要目标。伴随着信息技术的发展,研究生的培养已经与大数据发生了深度融合,海量科学数据逐渐成为科学研究的基本工具和信息来源,同时也为学术不端行为提供了机会。如何在大数据浪潮下推进教育事业的发展,稳步提高学生的数据素养和科研素质,驾驭住第四范式的挑战成为亟待解决的问题。本文重点分析了大数据时代下高校学生学习方式和科研方法的改变,从教学模式、科研方法两方面具体研究了大数据对研究生科研素质培养带来的巨大冲击,同时分析了多样化数据带来的包括知识产权、科研伦理等问题,针对大数据应用于教育领域的独特性,从以下四个方面提出了研究生科研素质培养的建议:(1)研究生的培养要顺应时代发展的潮流,采用线上线下相结合的培养模式;(2)高校应着力建设自己的数据库,同时考虑与专业数据公司合作共享数据;(3)注重提高学生的数据处理能力;(4)培养学生对新兴技术的应用;(5)要加强研究生科研伦理的培养。

    Abstract:

    The improvement of scientific research quality is an important goal of postgraduate cultivation in universities. With the development of information technology, postgraduate education has been deeply integrated with big data,massive scientific data has gradually become a basic tool and information source for scientific research, and it also provides opportunities for academic misconduct. How to promote the development of education under the wave of big data, steadily improve students' data literacy and scientific research quality, and master the challenges of the fourth paradigm has become an urgent problem to be solved. This article focuses on the analysis of the changes in the learning methods and scientific research methods of college students in the era of big data. It specifically studies the huge impact of big data on the cultivation of graduate students’ scientific research quality from the aspects of teaching mode and scientific research methods. It also analyzes the impact of diversified data. Including issues such as intellectual property rights and scientific research ethics. In view of the unique application of big data in the field of education, this article puts forward suggestions for the cultivation of graduate students’ scientific research quality: (1) Adopting a training model that combines online and offline with the trend of the times; (2) Universities should focus on building databases, and consider cooperating with professional data companies; (3) Focus on improving students' data processing capabilities; (4) Cultivate students' application of emerging technologies; (5) Strengthen the cultivation of research ethics for graduate students.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-23
  • 最后修改日期:2020-11-12
  • 录用日期:2020-11-30
  • 在线发布日期:
  • 出版日期:
文章二维码