机器学习赋能的混凝土结构基本原理教学探索与实践
DOI:
CSTR:
作者:
作者单位:

1.东南大学;2.南京工业大学

作者简介:

通讯作者:

中图分类号:

G642.3

基金项目:

东南大学教学改革与研究实践项目(2023-087)


Exploration and Practice of Teaching the Fundamental Principles of Concrete Structures Empowered by Machine Learning
Author:
Affiliation:

1.Southeast University;2.Nanjing Tech University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    《混凝土结构基本原理》的课程教学长期面临知识体系陈旧,教学方法固化,理论与实践等痛点问题,学生学习效率低下且容易丧失兴趣。本文将机器学习与混凝土教学的深度融合,构建了四阶融合的教学新路径:预测建模-构建输入参数与力学响应的非线性映射,突破传统公式的桎梏;解释分析-通过可解释机器学习模型量化变量贡献度,将经验系数转化为物理逻辑的直观表达;规律发现-利用符号回归挖掘兼具精度与可解释性的数学公式,还原科学规律的探索过程;智能设计-基于遗传算法生成多目标均衡方案,实现从人工试错法到智能寻优的跨越。新的教学路径以数据思维重塑知识学习模式,实现从静态规范公式到动态可更新模型;重构教学方法论,实现从单向讲授到师生交互探索;升级能力评价体系,实现从结果考核到过程追踪,最终推动学生从“公式应用者”蜕变为“规律发现者”,为新工科背景下复合型人才培养提供新的思路借鉴。

    Abstract:

    The teaching of the course "Fundamentals of Concrete Structures their interests. This article deeply integrates machine learning with concrete teaching, and constructs a new teaching path of four-step fusion: predictive modeling-constructing a nonlinear mapping between input parameters and mechanical responses, breaking through the shackles of traditional formulas; interpretive analysis-quantifying the contribution of variables through interpretable machine learning models, transforming empirical coefficients into intuitive expressions of physical logic; discovery of laws-using symbolic regression to mine mathematical formulas that are both accurate and interpretable, and to restore the exploration process of scientific laws; intelligent design-generating multi-objective equilibrium solutions based on genetic algorithms, achieving a leap from manual trial and error to intelligent optimization. The new teaching path reshapes the knowledge learning model with data thinking, realizing the transformation from static standardized formulas to dynamic renewable models. Reconstruct the teaching methodology, and realize the transformation from one-way teaching to interactive exploration between teachers and students. Upgrading the ability evaluation system, from result assessment to process tracking, and ultimately promoting students to transform from "formula applicators" to "science discoverers", provides new ideas for the cultivation of interdisciplinary talents in the context of new engineering.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-13
  • 最后修改日期:2025-03-27
  • 录用日期:2025-05-15
  • 在线发布日期:
  • 出版日期:
文章二维码