随着中国社会经济的快速发展,能源供需矛盾和环境压力日益突出,目前,建筑运行能耗约占全社会总能耗的30%,单位建筑能耗面积是发达国家的2~3倍[1],对社会造成了沉重的能源负担和严重的环境污染,已成为制约中国可持续发展的主要问题。在所有建筑中,大型商场建筑对舒适性要求高,空调系统运行时间长,其空调系统单位建筑的能耗为城镇建筑能耗的5倍 [2]。因此,研究大型商场建筑复杂中央空调系统的优化运行,实现节能降耗具有重要的经济效益和社会意义,而正确预测商场建筑的冷负荷,根据用户的需要提供冷量是实现大型复杂中央空调优化运行、节能降耗的关键。
建筑冷负荷与建筑几何尺寸、建筑材料、气象参数、人员、设备散热等因素有关。目前,建筑冷热负荷预测方法主要有回归分析法、仿真模型法和人工神经网络法。回归分析法主要包括多元线性回归模型(MLR)[3]、自回归(AR)模型[4],和带外部输入的自回归模型(ARX)[5]。对于MLR算法由于建筑冷负荷受多种变量的影响,且具有严重的非线性,所以预测精度一般不高。对于AR模型,由于该模型的输入仅为建筑冷负荷的历史数据,而没有考虑其他因素,所以预测精度也很难满足实际要求。ARX模型是将MLR与AR结合到一起形成的,该模型即考虑了历史数据对当前负荷预测的影响,也考虑了外界气象参数对负荷预测的影响,因此,该方法的预测精度优于MLR、AR方法。仿真模型法采用专业仿真软件通过输入建筑信息和气象数据仿真得到建筑的逐时冷负荷,比较典型的仿真软件有Energy-Plus[6]、TRNSYS[7]、ESP-r[8]和DeST[9]等。该方法的特点是仿真信息复杂,专业性强,主要用于冷、热能系统的规划和设计。人工神经网络[10]方法由于具有很好的学习功能,在建筑冷负荷预测方面得到了广泛的应用。主要有Ben-Nakhi模型[11]、Moon模型[12]、Ekici模型[13]、Dombayci模型[14]、Gonzalez模型[15]、Yang模型[16]和Paudel模型[17]等。当建筑结构和功能确定后,如何根据气象参数、人员时空分布等信息在线动态预测建筑冷负荷是非常必要的。室外气象参数(温度、湿度、太阳辐射等)的检测可以采用常规的传感器,比较容易实现,而对于人员时空分布信息,测量难度大,费用高,导致当前模型很少考虑人员分布情况,冷负荷预测方法主要为静态预测。文献[18]为了区分不同人员时空分布对负荷预测的影响,将预测模型分为工作日、周末、假日3种不同模型,该方法在一定程度上克服了不同人员数量对负荷预测的影响,主要适用于室内人员时空分布比较规律的办公写字楼。对于商场建筑,由于客流量的不确定性,该方法很难实现商场内冷负荷的动态准确预测,难以应用到实际工程。笔者首先根据商场建筑冷负荷的特点,确定建筑冷负荷预测模型的输入参数;然后提出了夏季基于新风机组供电频率的商场顾客率间接测量方法,在不增加硬件投资的条件下实现了商场人员时空分布信息的测量;最后提出AFC-HCMAC(Adaptive Fuzzy Clustering-Hyperball Cerebellar Model Articulation Controller)神经网络算法用于建立建筑冷负荷在线动态预测模型,实现了建筑冷负荷的在线动态精确预测。
商场建筑冷负荷主要受5个方面的因素影响:1)建筑本体特性,主要包括建筑方位、几何尺寸、建筑材料、窗墙比等;2)外界气象参数;3)室内温度设定值;4)人员时空分布;5)用电设备散热。对于影响因素1)建筑本体特性参数,当某一建筑建成后,该建筑方位、几何尺寸、建筑材料、窗墙比等参数值亦确定,因此对于同一建筑,其值为常量。对于影响因素3)室内温度设定值,尽管对于个性化空调,空调温度设定值通常根据不同用户偏好取不同设定值,但由于大型商场内顾客流动性大,室内温度设定值通常按照国家标准定为26 ℃,看作定值。对于影响因素5)用电设备散热,在大型商场内主要为电气照明散热。商场内安装大量的照明设施,从柜台、墙、柱到顶棚都布满了照明灯具,照明灯具在工作过程中,产生大量的热,致使灯泡、灯管以及灯座的表面温度较高,为了提高商场内环境的视觉舒适,在营业期间照明一般处于全开的状态,因此大型商场在营业时间设备散热可看作定值。由上分析,在商场建筑冷负荷预测模型中可不考虑建筑本体、室内温度设定值和设备散热对建筑冷负荷的影响。因此在预测模型输入中主要包括室外气象参数和人员数。根据文献[19]室外气象参数为当前时刻室外温度To、室外湿度Ho和室外太阳辐射Ro,由于太阳辐射对室内温度影响存在严重的滞后现象,在预测模型输入中还包括上一时刻室外太阳辐射。最终建立的预测模型如图 1所示,输入变量为To(k)、Ro (k)、Ro (k-1)、Ho(k)、Pr(k),输入5维,输出1维。
该模型为基于数据的数学模型,学习数据取自商场某一时间段的实际运行数据和气象数据。根据历史数据建立大型商场动态冷负荷预测模型,用于预测当前气象参数和人员数量情况下大型商场所需的冷负荷。
如上所述,室外气象参数的检测可以采用常规的传感器,比较容易实现。而对于室内人员数量的检测相对较难。目前,对于商场人数统计,一些公司研制出客流量统计器。但是,由于商场出入口较多,且客流高峰时会同时有多人进出,导致统计信息误差较大。人每时每刻都要散发热量,吸进氧气,呼出二氧化碳和水蒸气。通过测试,一般人每小时大约呼出二氧化碳约20 L,占呼出气体总量的4%。新鲜空气中的二氧化碳含量是0.03%~0.04%,如果大气中二氧化碳的含量超过0.1%即为轻微污染。当商场内人员客流量增多时,会导致二氧化碳浓度急剧增加。目前,商场内空气品质的评价主要依据二氧化碳浓度,为了即满足商场内空气品质要求,又实现节能控制,在夏季,新风机组可采用变频控制。通过新风机组的变频控制改变新风机组的新风量来满足室内空气品质的要求,变频的同时实现了节能控制。在室内二氧化碳浓度的控制过程中商场内人员数量与新风量呈正比关系。
作为一座大型商场建筑,需要安装多台新风机组以满足室内空气品质的需要,由于风量传感器通常价位较高,实用性差,在空调系统现场很少安装。本文采用间接测量的方式实现新风量的测量,新风机的风量由变频调速器调节,而新风机的供电频率和新风机的风量呈线性正比关系[20],频率越高,风量越大。假设商场内共有n台新风机组,则第i台新风机组新风量的计算公式为
其中:Fi为第i台新风机组风量,fi为第i台新风机供电频率,Fo,i为第i台新风机的名义供风量,由厂家提供,为常量。50表示中国的供电频率为50 Hz。从式(1)看出,将新风机组的新风量的测量转化为新风机供电频率的测量,而供电频率可由变频调速器直接得到,不需要增加额外费用。
n台新风机组的新风量的计算式为
空调系统设计时对新风机组选型通常按照设计新风量选型,设计新风量是根据商场空调面积、人员密度、人均新风量来确定的,具体参数可参照JGJ 48—2014商店建筑设计规范。按照新风机组的布置将商场区域划分为多个区域,n台新风机组对应n个区域。在采用动态负荷模型预测时,为了消除不同输入度量单位对预测结果的影响,需要对模型输入数据归一化处理,这导致在预测时并不需要知道商场内的人员具体数量,而只需要确定当前商场内人员数量占最大人员数量的比例即可,为此,引入顾客率概念。定义第i区域的顾客率为
据此可以确定每个区域的客流情况。整个商场的平均顾客率为
Fo,i为名义供风量,相当于该区域顾客率在总顾客率中所占权重。由于新风机组供电频率和新风量呈正比关系,通过新风机组的供电频率,实现了商场内顾客率的计算。
HCMAC神经网络[21]的输入空间超闭球量化方法简化了神经网络的计算过程,有利于分析神经网络的泛化能力和学习精度。但对于高维非线性系统,神经网络的权系数存储空间随输入维数的增加呈几何级数增加,导致该神经网络很难应用于高维非线性系统。本文通过自适应模糊聚类和高斯核函数的方法,将HCMAC高维输入空间映射到低维空间,解决了维数灾难问题。
神经网络输入空间的量化由输入空间的数据聚类确定。模糊C均值(FCM)[22]聚类能够很好地处理高维数据空间的聚类问题,但是FCM需要预先设置聚类数目,且由于初始聚类中心设置的随机性容易导致聚类中心陷入局部最优。为了克服FCM算法的局限性,将层次聚类HCM(hierarchical clustering method)与FCM聚类相结合提出自适应HCM-FCM聚类算法。设输入空间为X=(xi|i=1,2,…,m),输出空间为Y=(yi|i=1,2,…,m),其中任一输入xi=(xi,1,xi,2,…xi,d)为d维空间,输出为一维空间。自适应模糊聚类算法的基本思想是由层次聚类方法确定聚类数目和初始聚类中心,由FCM聚类算法优化聚类中心。
具体算法如下:
1)为了克服不同度量单位对欧氏距离计算结果的影响,将输入空间归一化处理。
2)初始情况下将输入空间样本分为m类,即每个输入样本对应一类,初始分类为X(0)=[P1(0),P2(0),…,Pm(0)],0表示为初始分类,设定距离阈值ε。
3)计算各类之间的距离,得到距离矩阵D(K)(K为聚类合并的次数),找出D(K)中的最小元素,若最小元素小于ε,将其对应的两类合并为一类,建立新的分类转步骤(3)。
4)层次聚类结束,将输入数据划分为L类,X=[P1,P2,…,PL],采用平均法得到每类的聚类中心,作为FCM聚类算法的初始聚类中心。
5)根据得到的聚类数目和初始聚类中心,调用FCM聚类算法最终得到全局最优聚类中心。
在FCM算法中引入层次聚类法,可以准确地确定FCM算法聚类数目。此外,在层次聚类算法中确定的初始聚类中心可避免FCM陷入局部最优。获取的聚类数目即为AFC-HCMAC神经网络节点数目,获取的L个聚类中心值C=[c1,c2,…,ci,…cL]即为神经网络节点值,每个聚类中心为d维向量,ci=[ci1,ci2,…cid]。
通过自适应模糊聚类将输入空间X划分为L个子空间,每个子空间对应一类。对每个子空间定义高斯核函数:
式中:xk∈Pi;ci为子空间Pi的聚类中心;σ为标准差,其值决定算法的精度和泛化能力。
第i个神经网络节点权度初始值的计算式为
式中:mi为第i个子空间对应的样本数;qoi即为第i个神经网络节点对应的权度初始值。依次计算每个神经网络节点权度初始值,形成神经网络权度初始向量q0。
神经网络输出计算式为
式中:B(xk)表示以xk为中心的超闭球,ci∈B(xk)表示包含在超闭球内的神经网络节点。超闭球B的半径取
神经网络权系数学习算法为
式中:α、β为常量,取0 < α < 2、β>0。ek-1为预测值与实际值之差。
根据系统的实时检测数据建立的预测模型随着系统的运行通常需要在线修改,主要表现在以下两个方面:
1)现场实时采集的数据满足距离阈值η的要求,即隶属于某一模糊划分子空间,但是预测的精度在一段时间内不能满足预测精度要求。
2)现场实时采集的数据距离最近的聚类中心大于距离阈值η;即不属于任何划分子空间。
为了评价在线预测模型是否满足预测精度要求,定义预测精度评价指标
式中:m为误差计算步长,即取前面10个周期的预测误差进行计算,当预测精度评价指标大于阈值η时,说明当前模型误差不能满足预测精度要求,需要重新学习。
在线预测学习过程如下:
1)在线采集室外温度、室外湿度和室外太阳辐射,根据新风量间接测量商场内顾客率,根据空调系统运行数据计算当前商场冷负荷,并将上述数据归一化处理;
2)计算该数据与预测模型聚类中心点的距离,若距离大于阈值η,则将该点增加为新的聚类中心,并确定该聚类中心的权值。若距离小于等于阈值η,则直接进入下一步;
3)利用预测模型预测下一时刻商场内冷负荷;
4)计算误差评价指标ER,若ER>η,则根据前期采集样本数据重新学习预测模型,否则结束。
以济南某一大型商场为例,建筑信息如表 1所示。根据该大型商场2014年气象数据和数据采集平台采集的数据得到预测模型学习和测试数据。
模型1为本文提出的预测模型,输入变量不变,即考虑商场顾客率;模型2为将模型中的输入信号顾客率去掉,即不考虑商场顾客率。两个模型的预测方法均采用本文提出的AFC-HCMAC预测方法。学习数据统一采用济南某一商场2014年6月冷负荷数据,通过AFC自适应模糊聚类得到模型1神经网络节点数为168个,模型2神经网络节点数为108个。预测学习曲线如图 2所示,从图 2可以看出,考虑顾客率模型1的预测精度远远大于不考虑顾客率模型2的预测精度,以RMSPE(Root mean square percentage error)均方根相对学习误差作为误差评价指标。
式中:y(i)为实际值;ˆy (i)为预测值;ˉy 为冷负荷的平均值。通过计算,模型1的均方根相对学习误差RMSPE_Learning1=3.14%。模型2的均方根相对学习误差RMSPE_Learning2 =15.63%。显然在商场冷负荷预测模型中考虑顾客率非常必要,可显著提高预测精度。
输入变量保持不变,即两个模型均考虑顾客率,分别采用本文提出的AFC-HCMAC神经网络预测模型和常规HCMAC神经网络预测模型学习济南某一商场2014年6月冷负荷数据。由于AFC-HCMAC神经网络预测模型和4.1节中模型1一致,学习数据亦相同,因此学习曲线为图 2(a)。图 3为HCMAC神经网络预测模型学习曲线,取量化级数为4,共获取1024(45)个神经网络节点。从图 2(a)和图 3可以看出,AFC-HCMAC预测模型的学习精度高于HCMAC预测模型的学习精度。HCMAC神经网络均方根相对学习误差RMSPE_learning3=5.10%。显然AFC-HCMAC神经网络即提高了神经网络学习精度,又降低了神经网络节点数。利用训练的AFC-HCMAC预测模型和HCMAC预测模型对7月份7月1日到7月7日的冷负荷进行测试,测试曲线如图 4所示。AFC-HCMAC预测模型的均方根相对测试误差RMSPE_Test1=4.73%,HCMAC预测模型的均方根相对测试误差RMSPE_Test2=8.34%。因此,本文提出的AFC-HCMAC预测模型的预测精度和泛化能力均优于常规的HCMAC预测模型。
1)根据新风机供电频率和新风量的线性关系,通过空调系统新风量的间接测量,在没有增加传感器的情况下实现了夏季商场内顾客率的测量。由AFC-HCMAC(考虑顾客率)和AFC-HCMAC(不考虑顾客率)预测模型测试曲线可以得到,顾客率对冷负荷的预测影响较大,在预测模型中将顾客率去掉,将严重降低冷负荷的预测精度。
2)为了克服高维神经网络维数灾难问题,通过自适应模糊聚类和引入核函数提出了一种AFC-HCMAC神经网络方法用于预测大型商场动态冷负荷,由AFC-HCMAC、HCMAC预测模型预测学习曲线可以看出,AFC-HCMAC算法的预测精度高于HCMAC算法,神经网络节点数由原来的1 024降低为168。同时也验证了提出的算法有较好的泛化能力。
该方法可实现夏季大型商场建筑的在线动态冷负荷预测,为大型复杂中央空调系统的在线优化节能运行提供了依据。