土木与环境工程学报  2020, Vol. 42 Issue (6): 153-164   doi: 10.11835/j.issn.2096-6717.2020.138   PDF    
焦化废水处理难点、新型技术与研究展望
郝馨 1, 付绍珠 1, 于博洋 1, 崔晓春 1, 董双石 2, 周丹丹 1     
1. 东北师范大学 环境学院, 长春 130024;
2. 吉林大学 新能源与环境学院, 长春 130021
摘要:随着工业技术的快速发展,工业废水产量也与日俱增,其中,焦化废水排放量大、组成成分复杂、影响程度深,所引发的环境污染尤为突出,一系列排放标准规定日趋严格,焦化废水的处理迫在眉睫。为尽快实现企业废水"零排放"政策要求,多种新型处理技术应运而生,治理效果和应用范围明显提高。通过综述现有焦化废水处理技术的特征与局限性,发现焦化废水处理方法多集中于生物处理技术和高级氧化法,而二者现常用技术在实际运行中仍存在处理效果不佳、运行成本过高等问题与挑战。但是,生物降解和高级氧化耦合处理技术前景广阔,不仅能提高处理效率,还能开拓多维探究领域,大量研究表明其对于难降解污染废水处理具有较大可行性。展望多工艺联用在焦化废水处理中的实用性,为深化焦化废水处理研究提供新的思路。
关键词焦化废水    生物处理    高级氧化    新型处理技术    多工艺联用    
Difficulties, new technology and research prospect of coking wastewater treatment
Hao Xin 1, Fu Shaozhu 1, Yu Boyang 1, Cui Xiaochun 1, Dong Shuangshi 2, Zhou Dandan 1     
1. School of Environment, Northeast Normal University, Changchun 130024, P. R. China;
2. College of New Energy and Environment, Jilin University, Changchun 130021, P. R. China
Abstract: With the rapid development of industrial technology in China, the output of industrial wastewater is also increasing day by day, in which coking wastewater discharge is large, composition is complex, influence degree is deep, the environmental pollution caused by it is especially prominent, a series of discharge standards are becoming more and more strict, and the treatment of coking wastewater is imminent. In order to realize the policy requirement of "zero discharge" of enterprise wastewater as soon as possible, various new treatment technologies emerge as the times require, and the treatment effect and application scope are obviously improved. In this paper, the characteristics and limitations of the existing coking wastewater treatment technology are reviewed. At present, the coking wastewater treatment methods are mostly focused on biological treatment technology and advanced oxidation method, but there are still some problems and challenges in the actual operation of the two commonly used technologies, such as poor treatment effect and high operating cost. However, the technology of biodegradation and advanced oxidation coupling treatment has a broad prospect, which not only improves the treatment efficiency, but also opens up the field of multi-dimensional exploration. A large number of studies have shown that it has great feasibility for the treatment of refractory and polluted wastewater.
Keywords: coking wastewater    biological treatment    advanced oxidation    new treatment technology    multi-process combined    

1 焦化废水特征

作为世界上最大的工业品生产国,中国年工业废水排放量高达186.4亿t [1]。在煤化工行业占国民经济总量16%的大背景下[2],中国拥有的数百家焦化厂和煤气厂排放焦化废水量达3亿t,约占工业化学总需氧量排放的1.6%,是中国工业废水污染控制工作的重点与难点[3-4]。焦化废水是典型的复杂、难降解、高毒性的有机废水,其有机化合物种类达高500余种[5],化学需氧量(Chemical Oxygen Demand,COD)在4 000 mg/L以上。多数情况下,经生物处理后,焦化废水中COD和氰化物浓度依旧可达150~300、5.0~15.0 mg/L[6-7],严重危害水生态环境与人类健康[8]

1.1 焦化废水的来源与排放标准

煤炭在能源结构中处于重要位置,占世界一次能源消耗量的25%,被广泛应用于钢铁、电力、化工等工业生产及居民生活领域[9]。煤炭加工主要以煤为原料,经气化、液化、干馏以及焦油加工和电石乙炔化工等化学加工,将煤转化为气体、液体和固体燃料以及化学品。其中,炼焦是最为传统和广泛应用的工艺,至今仍然是化学工业的重要组成部分。焦化废水是焦化厂在炼焦、煤气净化和副产品回收过程中产生的,是一种典型的含有难降解污染物的工业废水[10]。焦化废水含有多种生物抑制性甚至毒性组分,比如酚类、多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)、氰化物、硫化物、环状化合物等[11]

依据《炼焦化学工业污染物排放标准》(GB 16171—2012),自2015年1月1日起,现有普通地区焦化企业执行表 1规定的污染物排放限值;2015年10月1日后,新建企业执行标准同上。此修改后的标准排放限值与1996年首次发布的相比更为严苛,焦化废水的处理方法与排放模式也引起了更多的关注。

表 1 《炼焦化学工业污染物排放标准》(GB 16171—2012)焦化废水污染物排放限值 Table 1 Emission limit of pollutants from coking wastewater(GB 16171—2012)

1.2 焦化废水的水质特征

根据焦化生产工艺不同,焦化废水可分为洗涤水、蒸氨废水、精制废水[12]。其中,蒸氨废水和精制废水部分,包含大量的酚类、苯系物、多环芳烃、氰化物、硫化物、含氧和含硫杂环化合物以及长链烃等多种难降解物质[13]。特别是废水中的氰化物,不仅能引起急性中毒,短时间内就会导致水生生物死亡,对微生物也会产生毒性抑制作用[14]。此外,酚类物质也属于典型的生物抑制性污染物[15],其中,卤代酚是国际上公认的优先控制类污染物,具有致癌、致畸、致突变的“三致”作用。多环芳烃等杂环化合物则容易产生毒性积累,其中苯并(α)芘、苯并(α)蒽具有强致癌性,通过接触人体皮肤即可导致中毒[10, 16]。焦化废水中这些毒性强、危害大的有机组分导致焦化废水处理难度大、效果差,甚至其尾水对环境仍有潜在危害。图 1为焦化废水中各种有机组分所占总有机物百分比(BTEXs包括苯、甲苯、乙苯、二甲苯同分异构体)经不同生物处理和其他方法处理后的变化情况。可见,经生物处理后的焦化废水仍有较高程度的污染物存在[17-18]

图 1 焦化废水经不同方法处理后有机组分变化[18] Fig. 1 Organic composition of the coking wastewater from different treatment[18]

2 焦化废水处理技术

为了满足焦化废水行业日益严格的排放标准,近年来研究者对焦化废水的处理技术展开了更为深入的研究,生物法和高级氧化法是最常用且成熟的处理方法。

2.1 生物处理法的优势与挑战

生物处理是焦化废水处理的核心工艺,因经济、无二次污染的良好特性而得到广泛应用。厌氧生物处理焦化废水时,能够水解酸化大分子有机物质,并利用厌氧菌将产生的有机酸等小分子化合物转化为甲烷和二氧化碳。然而,厌氧生物处理法对COD的去除率较低、出水pH偏酸性,因此,常与好氧生物处理工艺联用:利用好氧微生物的代谢作用,经过一系列的生化反应并逐级释放能量,最终以低能位的有机物甚至无机物使出水无害化。

常见的生物处理工艺有A/O、A2/O、A/O2、A2/O2[19],不同工艺对焦化废水中各组分的处理效率也有所差异(如图 1所示)。未经处理的焦化废水对环境和生物有明显抑制性,而利用A2/O工艺对焦化废水进行处理后,其出水生物毒性明显降低,且厌氧过程对毒性去除率最高[20]。焦化废水中95%的有机物由酚类、PAHs和杂环类物质组成。其中,酚类物质通过生物处理后数量和种类减少,这是因为酚类不仅可被氧化还可被还原去除,进而苯环也通过好氧或厌氧作用裂解和完全矿化。酚类物质具有高毒性,对好氧和厌氧生物也具有毒杀作用,而微生物作为污水处理中不可或缺的主体,是转化降解毒性物质的首要实施者。在初始阶段,从自然界中筛选驯化具有针对作用的优势菌群,从而抵抗并打败目标污染物,实现污水无害化。研究表明,好氧条件下苯酚通过羟化形成邻苯二酚,再经邻位、间位两个独立代谢环裂解途径形成三羧酸循环中间物[21-23]。好氧生物处理中苯酚、2-甲酚类物质去除率达80%以上,而在厌氧生物处理阶段更有利于三甲基苯酚和硝基苯等的去除[17]。对于PAHs类物质来说,微生物对其降解难易程度取决于PAHs的结构复杂性,微生物的驯化是优势菌群作用的前提。好氧条件下,微生物会在PAHs环上加入1分子O2,形成二氧化物中间体,最后代谢为二羟基化物;厌氧条件下,PAHs经微生物的反硝化还原体系、硫酸盐还原体系、产甲烷还原体系和金属离子反应还原体系进行降解[24]。好氧处理可以去除50%左右的萘和甲基萘,厌氧处理中,分子量最小的PAHs-萘可通过吸附在污泥上而被减少[25],而联苯和苊的去除率分别为50%~60%和60%~70%左右[26]。值得关注的是,厌氧处理对高环PAHs具有更强的降解能力,3-4环PAHs的去除率可达60%以上,而好氧处理对低分子量物质转化效果较明显。双环PAHs在好氧和厌氧的组合工艺中均有较好的降解效果,但苊、蒽等PAHs类物质在生物处理后还会存在20%左右,仍需深度处理强化去除[27]。作为难被生物降解的PAHs之一的苯并芘,是一种具有五苯环结构而难以被环境中微生物利用的有机物,因此,在优势菌群筛选时难度较大,其代谢途径及降解机理尚未明确。目前,苯并芘在环境中的降解方式主要通过共基质代谢,共基质种类的选择决定了苯并芘的降解速度。有研究利用苯并芘作为Armillaria sp.F02菌株唯一碳氮源,通过添加葡萄糖使其对苯并芘的降解速度提高了2~5倍[28]Sphingomonas paucimobilis EPA 505本身对苯并芘几乎不发生降解,而添加葡萄糖产生共代谢后,苯并芘降解了31.5%[29];此外,利用寡养单胞菌对多种PAHs进行降解,发现目标污染物分子结构越简单,菌株代谢能力越强。将苯并芘作为唯一碳源时,其降解率达46.8%,而加入苯酚作为共基质可促进苯并芘的代谢,这对于同样包含高浓度苯酚的焦化废水处理来说,无疑是一种优势体现[30]。总的来说,与PAHs类物质相比,好氧生物处理对酚类物质的去除能力更为明显,而对多环芳烃的去除效果一般[31],但厌氧生物对PAHs的代谢速度较慢,且途径还有待进一步研究[32]。杂环类物质主要为含氮化合物,例如吡啶、吲哚、喹啉、异喹啉等,好氧处理对其降解效果为吡啶>吲哚>喹啉>甲基喹啉>异喹啉[18]。由此可见,生物处理法的选择与调控对焦化废水的降解具有显著影响。

生物处理中,优势菌群的演替影响着目标污染物的降解。在处理焦化废水时,假单胞菌(Pseudomonas)、懒杆菌科(Ignavibacteriaceae)等对降解多环芳烃类污染物起着重要作用,与对碳氢化合物起分解作用的螺旋杆菌科(Helicobacteraceae)共同促进苯环裂解[33]。但是,由于多环芳烃的极端性质,其生物降解受到疏水性和溶解性的限制,降解效果仍不理想。与之相反,低环多环芳烃由于具有较高的溶解度和传输效率而更容易降解[34-35]。与苯酚相比,氯酚不仅需要裂解苯环,还需先进行脱氯,因此,降解过程较为复杂,如需有绿弯菌门(Chloroflexi)、变形菌门(Proteobacteria)等在降解过程中达到一定丰度完成脱氯过程[36]。脱硫球茎菌属(Desulfobulbus)、脱硫弧菌(Desulfovibrio)、脱硫微菌(Desulfomicrobium)、地杆菌(Geobacter)、Hafniense这些硫酸盐还原菌也是脱氯的重要菌群[37]。其中,Desulfovibrio可以去除邻位氯,Hafniense则对所有位置的氯代基均能起到脱氯作用[38]。此外,浮霉菌门(Planctomycetes)主要进行硝化反应,放线菌门(Actinobacteria)对脱氮起主导作用,Herminiimonas可以促进有机物矿化等[39]SyntrophomonadaceaeSyntrophus这种互营单胞菌是厌氧处理中水解酸化的重要菌群[40]。同时有研究表明,将焦化废水进行好氧生物处理,发现其中几乎所有已知六环含氮杂环化合物以及硫氰酸盐均可被去除,此时主要菌群为硫化细菌(Thiobacillus)、Pseudomonas、丛毛单胞菌属(Comamonas)、伯克氏菌(Bulkholderia)[41-43]。综上,优势菌群的种类在焦化废水生物降解中起着决定性作用。

但是,生物处理运行时间通常较长,系统环境变化幅度较大,pH值也是影响整个体系的重要因素。废水在处理过程中理化性质的变化会引起菌群结构发生依次演替,废水组分的动态变化也会影响生物毒性和微生物活性。同一体系在不同pH值下对污染物有不同降解程度,pH值甚至会成为污染物降解的决定性因素。例如在厌氧消化过程中,pH处于4.5~8.0时,产酸菌能维系较好的优势,pH处于7.0~7.2时,产甲烷菌活性最高[44]。因此,维持pH值在适宜的范围内变化,提高优势菌群作用能力,也是生物处理工艺长时间稳定运行面临的挑战之一。

2.2 高级氧化法的现状与问题

焦化废水的化学处理法主要是利用高级氧化技术(Advanced Oxidation Process,AOPs)产生具有强氧化性的自由基,将废水中的有机物质转化为低毒或无毒产物,从而实现绿色排放。此过程产生的自由基种类已被发现的有羟基自由基(·OH)、硫酸根自由基(·SO42-)、超氧自由基(·O2-)等[45-46],其中研究最为广泛的是·OH。主要手段包括电催化氧化法、芬顿法、臭氧氧化法、光催化氧化法等[39, 47-55]。电催化氧化法是在电场作用下,通过溶液电解产生具有强氧化作用的自由基,使目标污染物失去电子从而实现降解[39];芬顿法是利用Fe2+作为催化剂激发H2O2产生高氧化性的·OH,可有效降解许多难生物降解的有机物,对挥发酚、苯等污染物的去除效果明显[52];臭氧氧化法对有机物的降解方式主要有两种,一种是以分子形式直接接触反应,另一种是在水中自行分解,产生氧化性更强的自由基(主要是·OH),将大分子有机物降解为小分子有机物,或完全矿化为CO2和H2O[54];光催化氧化法是利用紫外光或可见光与催化剂的作用下生成大量氧化活性物种,将污染物氧化分解,从而实现污染物降解[55]。多种实验结果表明,AOPs对焦化废水具有明显降解效果,其中,电催化氧化法应用尤为广泛,芬顿法也是研究热点,COD去除率甚至可达90%以上(如表 2所示)。

表 2 焦化废水处理技术中采用的AOPs Table 2 AOPs Used in Coking Wastewater Treatment

从AOPs的反应原理可以看出,·OH的产生速率在AOPs处理工艺中起关键作用,对目标污染物降解效率影响显著,因此,提高强氧化性自由基的转化也成为AOPs工艺的研究目标。但是,AOPs经常受到污染物特质限制,对于焦化废水这种色度极高的处理对象,AOPs类型的选择至关重要,在实际应用中存在局限性,例如,光催化氧化技术受水体透光性影响,色度极高的焦化废水影响光能在水中传递从而削减降低处理效果。而与生物处理法相比,难以被降解的强极性分子,如芳香族化合物,是出水毒性高的主要原因,添加AOPs的技术会因·OH的产生在污染物被降解的同时出现过度氧化,在降解焦化废水时产生氯,从而造成出水急性毒性和遗传毒性升高[56-57],且AOPs运行成本较高,基础投资较大,在实际应用中存在一定弊端。

总的来说,无论是生物法还是化学法,其本质都是通过微生物代谢或自由基氧化,改变目标污染物的结构,最终实现对焦化废水的降解。微生物群落与功能基因表达及自由基的产生速率,就是影响焦化废水处理效率的关键。

2.3 新型处理技术

除常规AOPs处理方法,一些新型的高级氧化技术也逐渐应用于焦化废水的处理。

2.3.1 臭氧催化氧化法

臭氧催化氧化法增加臭氧催化剂,刺激臭氧和H2O2分解,增强·OH和·O2-产生,实现对焦化废水中喹啉90%左右的降解,且矿化效率最高达90%左右。与传统的臭氧相比,催化臭氧通过添加催化剂使臭氧充分生成·OH和·O2-,极大地提高了污染物的去除和最终矿化效率[54]

2.3.2 微电解技术

微电解技术将金属和非金属组合形成的复合材料作为填料,目前多以Fe和C分别作为阳极和阴极的基础材料,通过阳极释放的铁离子和阴极释放的OH-与目标污染物接触使其截留。有研究利用微电解-电芬顿法对焦化废水进行预处理,并投入焦化厂进行实际应用,稳定运行3个月后实现月平均降低COD 40%以上,氨氮去除率达15%以上,可生化性提高40%[58]

微电解技术在反应中发生电解、氧化还原反应、絮凝作用等,非常适用于高盐度、高COD及难降解有机废水的处理[59],对焦化废水的色度及酚类物质有明显的去除效果[60]。随着科学技术的发展,微电解中新型填料的出现更提高了对难降解有机废水COD的去除[61]。同时,有研究者将微电解技术和生物处理进行联合使用,不仅发挥各工艺自身优势,又会发生多种工艺的协同效应[62-63],在焦化废水处理方面具有广阔的应用前景。

2.3.3 微藻-细菌组合

不同于利用厌氧或好氧生物法处理,有研究利用微藻-细菌组合探究焦化废水降解,在光照条件下,这种微藻与细菌共培养的方式可以完全去除苯酚,而单独微藻体系去除率不足30%,油脂的产生率也提高了1.5倍[64]。研究表明,微藻具有去除含氮化合物的能力,且一些微藻有很强的耐毒性,可以通过代谢降解PAHs、酚类物质和氰化物等[65],对焦化废水中含量较高的有机组分的去除很有针对性。藻类和细菌共培养可以提高微藻对含有有机和无机污染物废水的适用性[66],可高效去除目标污染物并减少温室气体排放[67]。微藻-细菌体系在降解焦化废水的同时还可以产生油脂,既能减少环境污染,又能实现废水资源的充分利用。

这些逐步更新的处理技术在原有降解焦化废水的基础上进一步探究新成效,不仅可为解决焦化行业实际处理中水量大的难题做出可行预测,更为日后焦化废水资源化提供理论基础。

2.3.4 膜处理技术

由于膜处理技术的出水水质高、占地面积小和能耗少等优势,常被用于焦化废水的深度处理[68]。基于膜处理技术原理衍生了多种高效处理方法,例如微滤、超滤、纳滤、反渗透和电渗析法等。而在实际应用中多种联合应用膜处理技术工艺也较为常见。有研究利用超滤+纳滤+反渗透对焦化废水进行深度处理,其降解效果达95%左右,且运行成本降低[69];有工厂利用超滤+反渗透对焦化厂生化出水进行深度处理,处理后的出水氯离子含量大幅度降低,可达循环水标准进行回用[70]。这种膜处理技术对于COD较高、盐度较大的焦化废水深度处理具有显著优势。

2.3.5 ICPB技术

虽然常用的AOPs可以使大部分有机物质氧化,对难降解有机物有突出的优势,但其成本一般较高,且易发生中间产物累积,甚至生成毒性更强的中间产物。与AOPs互补,生物处理法虽然成本低、可实现对污染物的毒性削减和生物矿化,但处理焦化废水所需时间长,降解效率难以得到保障。研发设计能够使AOPs与生物降解相互取长补短、集成式使用的新技术,是一种新的发展趋势。

2008年,美国工程院院士Rittmann课题组提出光催化-生物降解直接耦合技术(Intimate Coupling of Photocatalysis and Biodegradation,ICPB)[71]:将光催化剂负载于多孔载体表面,培养好的生物膜生长于载体内部,实现光催化技术与生物降解技术在同一单元内直接耦合。利用外部紫外光照射,使催化剂产生具有强氧化性的活性物种,有机物通过光催化降解为简单中间产物,再通过生物进一步代谢降解[72](如图 2所示)。将光催化和生物降解直接耦合的技术方法可以结合二者的优点,有研究利用ICPB技术对苯酚[73-75]、氯酚[76-77]、硝基苯[78]进行降解,均具有良好的处理性能。ICPB技术的提出弥补了传统单一处理方法存在的弊端,是一种高效、绿色的处理方法。

图 2 光催化-生物降解直接耦合技术反应体系及反应原理 Fig. 2 ICPB reactor and mechanism schematic diagram

尽管目前尚鲜见ICPB直接用于焦化废水处理的报道,但从ICPB对酚类物质降解方面的优势可预见其潜力。Li等[77, 79]在ICPB降解氯酚废水方面开展了大量工作,解析了三氯酚(Trichlorophenol,TCP)的去除与矿化机制。单一光催化对TCP(初始浓度为14 μmol/L)的去除率为93%,但对溶解性总有机碳(Dissolved Total Organic Carbon, DOC)的去除没有显著贡献。与之相比,ICPB反应不仅进一步提高了TCP的去除效率,出水DOC的浓度较单独的光催化反应降低了90%。有共基质存在时,活细胞比率可提高20%,且生物多样性指数显著提升,氯酚的去除率与矿化率分别提高了27%和23%[80]。同时,基于ICPB体系已经开展较为系统和深入的工作,包括以优势活性物种影响为背景的催化剂筛选[80-81]、催化剂自组装负载方法建立与优化[82]、直接耦合反应动力学模拟与验证[83],以及直接耦合机制[73, 77, 79, 84-85]等,日渐揭开了ICPB技术的神秘面纱,在多种典型污染物降解与矿化方面的优势愈发凸显。

此外,Su等[86]利用臭氧氧化和好氧生物近场耦合处理技术,展示了该方法在抗生素废水处理方面的优势,实现了其他AOPs和生物处理的联用,为多工艺联用技术奠定了理论基础,也为其他难降解污水处理拓宽了研究领域,未来应进一步探讨该技术在焦化废水处理与调控方面的可行性与调控策略。

2.4 其他处理技术

焦化废水中的物化法因其操作简单、成效显著,成为了一种较为基础的处理技术,主要包括吸附法和混凝法等。

2.4.1 吸附法

吸附法是利用吸附剂对水体中某一组分进行选择吸附,从而去除目标污染物,其对焦化废水中的氰化物、氨氮等有明显作用。焦化废水处理中常用的吸附剂有活性炭[87]、吸附树脂[88]、粉煤灰[89-90]等,但吸附法只是对污染物进行相转移,无法彻底降解污染物,且通常吸附剂成本过高、回收困难和二次污染等问题限制了吸附法在处理焦化废水中大规模应用。因此,吸附剂的优化和开发也成为目前的研究趋势。

2.4.2 混凝法

混凝法是利用混凝剂通过压缩双电层、化学架桥作用、吸附电中和及网捕卷扫等作用去除水体中可溶性有机物和悬浮颗粒物[91]。新型磁混凝技术在常规混凝法基础上融入磁性磁种,使非磁性污染物与磁种结合形成稳定絮体,在磁场作用下可以与水体分离,从而实现对污染物的去除[92]。磁混凝法不仅具有传统混凝法优点,而且其处理效率更高、絮体更紧实、沉降速度更快[93],其速度可达普通混凝法的20倍,是近年来发展速度最快、应用最为广泛的焦化废水处理技术之一[93]

多种新型技术的出现不仅提高了焦化废水降解效果,更将处理方法延伸到多领域,包含但不局限于已有基础领域中的好氧与厌氧生物处理和简单的AOPs,充分利用已有经验使研究方向得到进一步深化,为发展后续焦化废水处理新平台提供更多可能性。

3 结论与展望

随着煤化工行业逐步发展,焦化废水产量也在逐渐增多,其带来的环境危害也开始进入人们的视野,成为水源污染的重要源头之一。为改善和解决焦化废水所带来的影响,多种新型技术应运而生。这些新型技术的存在使焦化废水处理效率日益提高,其中不仅有较为基础的单元式处理工艺,更包含升华后的多种工艺联用。多种工艺的“跨界”联合应用理论上不仅可以减少单独工艺自身缺点,更可通过多者协同作用发挥“1+1>2”的优势。

不同新型处理技术具有不同的优点,催化臭氧技术旨在提高降解效率,但催化剂的回收再利用仍是研究需要关注的重点;微电解技术处理效果明显,但电解材料优化是重中之重;膜处理技术占地面积小、能耗少,是应用最为广泛的方法之一,但对目标污染物具有高度选择性,且膜污染问题对此技术的发展限制性较大,还需对膜清洁和稳定性做进一步完善。

以ICPB技术为代表的高级氧化与生物降解近场耦合理念,将微生物学和物化多方向充分融合,为焦化废水处理效率提升提供了新的研发开拓方向。为了解决ICPB技术以光能输入激发催化氧化在处理色度较高的焦化废水的局限性,应进一步研发其他高级氧化技术与生物降解近场耦合技术。

此外,针对焦化废水高COD的特征,单一高级氧化预处理存在经济成本过高的瓶颈问题,好氧生物处理也不再能满足其要求,厌氧处理法成本相对较低,且对于有机物浓度要求在1 000 mg/L以上,仅需要很少的能量和非常低的营养,同时,厌氧菌可以将废物中大多数有机物质转化为有用能,被认为更适用于高负荷工业废水的处理。而厌氧生物处理运行时间过长、受环境影响较大,在实际应用中单独使用具有一定局限性。因此,在未来焦化废水处理技术的发展中,有必要进一步研发高级氧化与厌氧生物处理近场耦合的新技术。应充分发挥厌氧生物处理优势,在与高级氧化耦合联用时使二者对焦化废水处理效果最佳。

参考文献
[1]
KONG Z, LI L, XUE Y, et al. Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater:A review[J]. Journal of Cleaner Production, 2019, 231: 913-927. DOI:10.1016/j.jclepro.2019.05.233
[2]
孙岩柏, 常鑫, 李卫平, 等. Ti/RuO2-ZrO2电极电解处理焦化废水生化出水[J]. 水处理技术, 2020, 46(4): 111-115.
SUN Y B, CHANG X, LI W P, et al. Preparation of Ti/RuO2-ZrO2 electrode and electrolytic treatment for biochemical effluent from coking wastewater[J]. Technology of Water Treatment, 2020, 46(4): 111-115. (in Chinese)
[3]
WEI C, WU H P, KONG Q P, et al. Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization[J]. Journal of Environmental Management, 2019, 246: 324-333.
[4]
GUO D S, SHI Q T, HE B B, et al. Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1788-1793.
[5]
张万辉, 韦朝海, 吴超飞, 等. 焦化废水中有机物的识别、污染特性及其在废水处理过程中的降解[J]. 环境化学, 2012, 31(10): 1480-1486.
ZHANG W H, WEI C H, WU C F, et al. Identification, property and degradation of organic compounds in coking wastewater during treatment processes[J]. Environmental Chemistry, 2012, 31(10): 1480-1486. (in Chinese)
[6]
LI J, YUAN X, ZHAO H P, et al. Highly efficient one-step advanced treatment of biologically pretreated coking wastewater by an integration of coagulation and adsorption process[J]. Bioresource Technology, 2018, 247: 1206-1209. DOI:10.1016/j.biortech.2017.09.019
[7]
XU P, MA W C, HOU B L, et al. A novel integration of microwave catalytic oxidation and MBBR process and its application in advanced treatment of biologically pretreated Lurgi coal gasification wastewater[J]. Separation and Purification Technology, 2017, 177: 233-238. DOI:10.1016/j.seppur.2016.12.023
[8]
NEGREANU Y, PASTERNAK Z, JURKEVITCH E, et al. Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils[J]. Environmental Science & Technology, 2012, 46(9): 4800-4808.
[9]
彭苏萍. 中国煤炭资源开发与环境保护[J]. 科技导报, 2009, 27(17): 3.
PENG S P. China coal resource exploitation and environmental protection[J]. Science & Technology Review, 2009, 27(17): 3. (in Chinese)
[10]
ZHANG M, TAY J H, QIAN Y, et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH3-N removal[J]. Water Research, 1998, 32(2): 519-527. DOI:10.1016/S0043-1354(97)00231-5
[11]
ZHAO W T, SUI Q, HUANG X. Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic-anoxic-oxic process for highly toxic coke wastewater treatment[J]. Science of the Total Environment, 2018, 635: 716-724. DOI:10.1016/j.scitotenv.2018.04.162
[12]
王立东.焦化废水深度处理与回用研究[D].上海: 华东理工大学, 2017.
WANG L D. Research of reuse of coking wastewater[D].Shanghai: East China University of Science and Technology, 2017.(in Chinese)
[13]
夏立全, 陈贵锋, 李文博, 等. 焦化废水处理技术进展与发展方向[J]. 洁净煤技术, 2020, 26(4): 56-63.
XIA L Q, CHEN G F, LI W B, et al. Progress and perspectives of coking wastewater treatment technology[J]. Clean Coal Technology, 2020, 26(4): 56-63. (in Chinese)
[14]
王小英. 焦化废水的处理技术[J]. 山西焦煤科技, 2006, 30(5): 35-37.
WANG X Y. Processing technology of coking waste water[J]. Shanxi Coking Coal Science & Technology, 2006, 30(5): 35-37. (in Chinese)
[15]
MELO J S, KHOLI S, PATWARDHAN A W, et al. Effect of oxygen transfer limitations in phenol biodegradation[J]. Process Biochemistry, 2005, 40(2): 625-628. DOI:10.1016/j.procbio.2004.01.049
[16]
WU H Z, WANG M, ZHU S, et al. Structure and function of microbial community associated with phenol co-substrate in degradation of benzo[a]pyrene in coking wastewater[J]. Chemosphere, 2019, 228: 128-138.
[17]
SHARMA N K, PHILIP L. Effect of cyanide on phenolics and aromatic hydrocarbons biodegradation under anaerobic and anoxic conditions[J]. Chemical Engineering Journal, 2014, 256: 255-267. DOI:10.1016/j.cej.2014.06.070
[18]
REN J, LI J F, LI J G, et al. Tracking multiple aromatic compounds in a full-scale coking wastewater reclamation plant:Interaction with biological and advanced treatments[J]. Chemosphere, 2019, 222: 431-439. DOI:10.1016/j.chemosphere.2019.01.179
[19]
XU P, HAN H J, ZHUANG H F, et al. Anoxic degradation of nitrogenous heterocyclic compounds by activated sludge and their active sites[J]. Journal of Environmental Sciences, 2015, 31: 221-225. DOI:10.1016/j.jes.2014.09.034
[20]
石柳. A/A/O工艺对焦化废水生物毒性削减效果评价[J]. 资源节约与环保, 2018(2): 81-82.
SHI L. Evaluation of Biological Toxicity Reduction Effect of Coking Wastewater by A/A/O[J]. Resources Economization & Environmental Protection, 2018(2): 81-82.
[21]
李淑彬, 陈振军. 微生物降解酚类化合物的研究进展[J]. 华南师范大学学报(自然科学版), 2005, 37(4): 136-142.
LI S B, CHEN Z J. Research advances in microbiodegradation of compound of phenols[J]. Journal of South China Normal University (Natural Science), 2005, 37(4): 136-142. (in Chinese)
[22]
ARAI H, OHISHI T, CHANG M Y, et al. Arrangement and regulation of the genes for meta-pathway enzymes requiredfor degradation of phenol in Comamonas testosteroni TA441[J]. Microbiology (Reading, England), 2000, 146(Pt 7): 1707-1715.
[23]
王一惠, 向述荣, 张银定, 等. 微生物降解苯酚的研究进展及其工程菌的应用前景[J]. 高技术通讯, 2001, 11(12): 98-101.
WANG Y H, XIANG S R, ZHANG Y D, et al. Research advances of biodegradation of phenol and prospect of application of recombined strain[J]. High Technology Letters, 2001, 11(12): 98-101. (in Chinese)
[24]
陈秀鹃, 姜丽佳, 孙靖云, 等. 微生物降解多环芳烃的研究进展[J]. 现代化工, 2018, 38(10): 34-37.
CHEN X J, JIANG L J, SUN J Y, et al. Research progress in microbial degradation of polycyclic aromatic hydrocarbons[J]. Modern Chemical Industry, 2018, 38(10): 34-37. (in Chinese)
[25]
李恩超, 侯红娟, 董晓丹. 焦化废水中苯胺和萘等物质在厌氧条件下去除规律的研究[J]. 宝钢技术, 2009(3): 24-26.
LI E C, HOU H J, DONG X D. The removal performance and biodegradation pathway of aniline and naphthalene under anaerobic conditions in coking-plant wastewater[J]. Baosteel Technology, 2009(3): 24-26. (in Chinese)
[26]
ZHANG W H, WEI C H, CHAI X S, et al. The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant[J]. Chemosphere, 2012, 88(2): 174-182. DOI:10.1016/j.chemosphere.2012.02.076
[27]
HUANG Y, HOU X L, LIU S T, et al. Correspondence analysis of bio-refractory compounds degradation and microbiological community distribution in anaerobic filter for coking wastewater treatment[J]. Chemical Engineering Journal, 2016, 304: 864-872. DOI:10.1016/j.cej.2016.05.142
[28]
HADIBARATA T, KRISTANTI R A. Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022[J]. Bioresource Technology, 2012, 107: 314-318.
[29]
YE D Y, SIDDIQI M A, MACCUBBIN A E, et al. Degradation of Polynuclear Aromatic Hydrocarbons bySphingomonas paucimobilis[J]. Environmental Science & Technology, 1996, 30(1): 136-142.
[30]
胡肖怡.焦化废水中多环芳烃生物降解的促进机制[D].广州: 华南理工大学, 2018.
HU X Y. Enhanced biodegradation of polycyclic aromatic hydrocarbons in coking wastewater[D]. Guangzhou: South China University of Technology, 2018.(in Chinese)
[31]
KONG Q P, WU H Z, LIU L, et al. Solubilization of polycyclic aromatic hydrocarbons (PAHs) with phenol in coking wastewater treatment system:Interaction and engineering significance[J]. Science of the Total Environment, 2018, 628/629: 467-473. DOI:10.1016/j.scitotenv.2018.02.077
[32]
翟靖鑫, 叶波平. 微生物降解多环芳烃的研究进展[J]. 科学技术创新, 2019(18): 29-30.
ZHAI J X, YE B P. Advances in microbial degradation of polycyclic aromatic hydrocarbons[J]. Scientific and Technological Innovation, 2019(18): 29-30.
[33]
OXLEY A P A, POWELL M, MCKAY D B. Species of the family Helicobacteraceae detected in an Australian sea lion (neophoca cinerea) with chronic gastritis[J]. Journal of Clinical Microbiology, 2004, 42(8): 3505-3512. DOI:10.1128/JCM.42.8.3505-3512.2004
[34]
ZHOU Z, YU T, DONG H L, et al. Chemical oxygen demand (COD) removal from bio-treated coking wastewater by hydroxyl radicals produced from a reduced clay mineral[J]. Applied Clay Science, 2019, 180: 105199. DOI:10.1016/j.clay.2019.105199
[35]
SUN S L, WANG Y X, ZANG T T, et al. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons[J]. Bioresource Technology, 2019, 281: 421-428. DOI:10.1016/j.biortech.2019.02.087
[36]
XU Y, HE Y, TANG X J, et al. Reconstruction of microbial community structures as evidences for soil redox coupled reductive dechlorination of PCP in a mangrove soil[J]. Science of the Total Environment, 2017, 596/597: 147-157. DOI:10.1016/j.scitotenv.2017.04.073
[37]
ZHEN H J, DU S Y, RODENBURG L A, et al. Reductive dechlorination of 1, 2, 3, 7, 8-pentachlorodibenzo-p-dioxin and Aroclor 1260, 1254 and 1242 by a mixed culture containing Dehalococcoides mccartyi strain 195[J]. Water Research, 2014, 52: 51-62. DOI:10.1016/j.watres.2013.12.038
[38]
ZHANG D D, ZHANG C F, LI Z L, et al. Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization[J]. Bioresource Technology, 2014, 164: 232-240. DOI:10.1016/j.biortech.2014.04.071
[39]
WU Z Y, LIU Y, WANG S Y, et al. A novel integrated system of three-dimensional electrochemical reactors (3DERs) and three-dimensional biofilm electrode reactors (3DBERs) for coking wastewater treatment[J]. Bioresource Technology, 2019, 284: 222-230. DOI:10.1016/j.biortech.2019.03.123
[40]
SLEZAK R, GRZELAK J, KRZYSTEK L, et al. The effect of initial organic load of the kitchen waste on the production of VFA and H2 in dark fermentation[J]. Waste Management, 2017, 68: 610-617. DOI:10.1016/j.wasman.2017.06.024
[41]
MA Q, QU Y Y, ZHANG X W, et al. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems[J]. Science Reports, 2015, 5: 17674. DOI:10.1038/srep17674
[42]
WANG Z P, LIU L L, GUO F, et al. Deciphering cyanide-degrading potential of bacterial community associated with the coking wastewater treatment plant with a novel draft genome[J]. Microbial Ecology, 2015, 70(3): 701-709. DOI:10.1007/s00248-015-0611-x
[43]
QU Y Y, ZHANG X W, SHEN W L, et al. Illumina MiSeq sequencing reveals long-term impacts of single-walled carbon nanotubes on microbial communities of wastewater treatment systems[J]. Bioresource Technology, 2016, 211: 209-215. DOI:10.1016/j.biortech.2016.03.043
[44]
孙琪媛, 胡以松, 王晓昌. 污水处理中厌氧动态膜生物反应器的研究进展[J]. 工业水处理, 2017, 37(3): 1-5.
SUN Q Y, HU Y S, WANG X C. Research progress in anaerobic dynamic membrane bioreactor(AnDMBR) for wastewater treatment[J]. Industrial Water Treatment, 2017, 37(3): 1-5. (in Chinese)
[45]
LIU W T, MARSH T L, FORNEY L J. Determination of the microbial diversity of anaerobic-aerobic activated sludge by a novel molecular biological technique[J]. Water Science and Technology, 1998, 37(4/5): 417-422.
[46]
OSBORN A M, MOORE E R B, TIMMIS K N. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics[J]. Environmental Microbiology, 2000, 2(1): 39-50. DOI:10.1046/j.1462-2920.2000.00081.x
[47]
REN G B, ZHOU M H, ZHANG Q Z, et al. Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load[J]. Water Research, 2019, 154: 336-348. DOI:10.1016/j.watres.2019.02.013
[48]
ZHANG T T, LIU Y J, YANG L, et al. Ti-Sn-Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a three-dimensional electrochemical reaction system[J]. Journal of Cleaner Production, 2020, 258: 120273. DOI:10.1016/j.jclepro.2020.120273
[49]
WU Z Y, ZHU W P, LIU Y, et al. An integrated three-dimensional electrochemical system for efficient treatment of coking wastewater rich in ammonia nitrogen[J]. Chemosphere, 2020, 246: 125703. DOI:10.1016/j.chemosphere.2019.125703
[50]
DUAN L J, LI J, SHANG K F, et al. Enhanced biodegradability of coking wastewater by gas phase dielectric barrier discharge plasma[J]. Separation andPurification Technology, 2015, 154: 359-365. DOI:10.1016/j.seppur.2015.09.048
[51]
VERMA V, CHAUDHARI P K. Optimization of multiple parameters for treatment of coking wastewater using Fenton oxidation[J]. Arabian Journal of Chemistry, 2020, 13(4): 5084-5095. DOI:10.1016/j.arabjc.2020.02.008
[52]
ZHU X B, TIAN J P, LIU R, et al. Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology[J]. Separation and Purification Technology, 2011, 81(3): 444-450. DOI:10.1016/j.seppur.2011.08.023
[53]
OZYONAR F, KARAGOZOGLU B. Treatment of pretreated coke wastewater by electrocoagulation and electrochemical peroxidation processes[J]. Separation and Purification Technology, 2015, 150: 268-277. DOI:10.1016/j.seppur.2015.07.011
[54]
LIU D, WANG C R, SONG Y F, et al. Effective mineralization of quinoline and bio-treated coking wastewater by catalytic ozonation using CuFe2O4/Sepiolite catalyst:Efficiency and mechanism[J]. Chemosphere, 2019, 227: 647-656. DOI:10.1016/j.chemosphere.2019.04.040
[55]
GAO M J, WANG X D, GUO M, et al. Contrast on COD photo-degradation in coking wastewater catalyzed by TiO2 and TiO2-TiO2 nanorod arrays[J]. Catalysis Today, 2011, 174(1): 79-87. DOI:10.1016/j.cattod.2011.02.024
[56]
方元狄, 张静, 郑中原, 等. 焦化废水处理试验系统出水的生物毒性变化[J]. 生态毒理学报, 2017, 12(3): 317-326.
FANG Y D, ZHANG J, ZHENG Z Y, et al. The variation of effluent bio-toxicity in an experimental system for coking wastewater treatment[J]. Asian Journal of Ecotoxicology, 2017, 12(3): 317-326. (in Chinese)
[57]
YU X Y. Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions[J]. Journal of Physical and Chemical Reference Data, 2004, 33(3): 747-763. DOI:10.1063/1.1695414
[58]
杨帆, 刘欢, 张东波, 等. 微电解-芬顿法预处理废水技术在邯钢焦化厂的应用实践[J]. 山西化工, 2019, 39(3): 149-150.
YANG F, LIU H, ZHANG D B, et al. An application example of coking waste water pre-treatment by micro-electrolysis-Fenton[J]. Shanxi Chemical Industry, 2019, 39(3): 149-150. (in Chinese)
[59]
YANG X Y, XUE Y, WANG W N. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis[J]. Bioresource Technology, 2009, 100(2): 649-653. DOI:10.1016/j.biortech.2008.07.035
[60]
黄继承. 微电解技术在工业废水处理中的运用[J]. 中国科技信息, 2019(20): 40-41.
HUANG J C. Application of Microelectrolysis Technology in Industrial Wastewater Treatment[J]. China Science and Technology Information, 2019(20): 40-41.
[61]
ZHU X Y, CHEN X J, YANG Z M, et al. Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis[J]. Chemical Engineering Journal, 2018, 338: 46-54. DOI:10.1016/j.cej.2017.12.091
[62]
程言妍, 成伟东. Fe/C微电解技术处理工业废水研究进展[J]. 化学与生物工程, 2020, 37(3): 15-18, 24.
CHENG Y Y, CHENG W D. Research progress in treatment of industrial wastewater by Fe/C micro-electrolysis[J]. Chemistry & Bioengineering, 2020, 37(3): 15-18, 24. (in Chinese)
[63]
HUANG L H, SUN G P, YANG T, et al. A preliminary study of anaerobic treatment coupled with micro-electrolysis for anthraquinone dye wastewater[J]. Desalination, 2013, 309: 91-96. DOI:10.1016/j.desal.2012.09.029
[64]
RYU B G, KIM J, HAN J I, et al. Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids[J]. Bioresource Technology, 2017, 225: 58-66. DOI:10.1016/j.biortech.2016.11.029
[65]
RYU B G, KIM J, FAROOQ W, et al. Algal-bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions[J]. Bioresource Technology, 2014, 162: 70-79. DOI:10.1016/j.biortech.2014.03.084
[66]
ZHAO X, ZHOU Y, HUANG S, et al. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production[J]. Bioresource Technology, 2014, 156: 322-328. DOI:10.1016/j.biortech.2013.12.112
[67]
SU Y Y, MENNERICH A, URBAN B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment:Influence of algae and sludge inoculation ratios[J]. Bioresource Technology, 2012, 105: 67-73. DOI:10.1016/j.biortech.2011.11.113
[68]
张万辉, 韦朝海, 晏波, 等. 焦化废水中溶解性有机物组分的特征分析[J]. 环境化学, 2012, 31(5): 702-707.
ZHANG W H, WEI C H, YAN B, et al. Composition characterization ofdissolved organic matters in coking wastewater[J]. Environmental Chemistry, 2012, 31(5): 702-707. (in Chinese)
[69]
穆明明, 左青. 全膜法在焦化废水回用的应用[J]. 工业水处理, 2015, 35(1): 97-100.
MU M M, ZUO Q. Application of membrane process to coking wastewater reuse[J]. Industrial Water Treatment, 2015, 35(1): 97-100. (in Chinese)
[70]
王文强, 段继海. 焦化废水深度处理研究现状[J]. 当代化工, 2016, 45(8): 1959-1963.
WANG W Q, DUAN J H. Present situation of research on advanced treatment of coking wastewater[J]. Contemporary Chemical Industry, 2016, 45(8): 1959-1963. (in Chinese)
[71]
MARSOLEK M D, TORRES C I, HAUSNER M, et al. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor[J]. Biotechnology and Bioengineering, 2008, 101(1): 83-92. DOI:10.1002/bit.21889
[72]
马跃.光催化与生物降解直接耦合降解四环素废水的反应动力学模型研究[D].长春: 吉林大学, 2018.
MA Y. Study on the kinetic modeling of tetracycline wastewater removal by intimately coupled photocatalysis and biodegradation[D]. Changchun: Jilin University, 2018.(in Chinese)
[73]
ZHOU D D, XU Z X, DONG S S, et al. Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types:visible light vs UV light[J]. Environmental Science & Technology, 2015, 49(13): 7776-7783.
[74]
MA D M, ZOU D L, ZHOU D D, et al. Phenol removal and biofilm response in coupling of visible-light-driven photocatalysis and biodegradation:Effect of hydrothermal treatment temperature[J]. International Biodeterioration & Biodegradation, 2015, 104: 178-185.
[75]
WANG J W, ZHANG Y M, YAN N, et al. Enhanced phenol bioavailability by means of photocatalysis[J]. Biodegradation, 2013, 24(5): 597-602. DOI:10.1007/s10532-012-9603-4
[76]
ZHANG Y M, PU X J, FANG M M, et al. 2, 4, 6-trichlorophenol (TCP) photobiodegradation and its effect on community structure[J]. Biodegradation, 2012, 23(4): 575-583. DOI:10.1007/s10532-012-9534-0
[77]
LI G Z, PARK S, KANG D W, et al. 2, 4, 5-trichlorophenol degradation using a novel TiO2-coated biofilm carrier:roles of adsorption, photocatalysis, and biodegradation[J]. Environmental Science & Technology, 2011, 45(19): 8359-8367.
[78]
YANG L H, ZHANG Y M, BAI Q, et al. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation[J]. Journal ofHazardous Materials, 2015, 287: 252-258. DOI:10.1016/j.jhazmat.2015.01.055
[79]
LI G Z, PARK S, RITTMANN B E. Developing an efficient TiO2-coated biofilm carrier for intimate coupling of photocatalysis and biodegradation[J]. Water Research, 2012, 46(19): 6489-6496. DOI:10.1016/j.watres.2012.09.029
[80]
ZHAO M Y, SHI J L, ZHAO Z Q, et al. Enhancing chlorophenol biodegradation:Using a co-substrate strategy to resist photo-H2O2 stress in a photocatalytic-biological reactor[J]. Chemical Engineering Journal, 2018, 352: 255-261. DOI:10.1016/j.cej.2018.07.018
[81]
XIONG H F, DONG S S, ZHANG J, et al. Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor[J]. Water Research, 2018, 136: 75-83. DOI:10.1016/j.watres.2018.02.061
[82]
ZHANG J, DU Y L, ZHANG L, et al. Preparation of sponge carrier supported photocatalyst by self-assembly technique for phenol photodegradation in visible light[J]. Molecular Catalysis, 2017, 432: 1-7. DOI:10.1016/j.mcat.2017.01.022
[83]
MA Y, XIONG H F, ZHAO Z Q, et al. Model-based evaluation of tetracycline hydrochloride removal and mineralization in an intimately coupled photocatalysis and biodegradation reactor[J]. Chemical Engineering Journal, 2018, 351: 967-975. DOI:10.1016/j.cej.2018.06.167
[84]
XIONG H F, ZOU D L, ZHOU D D, et al. Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB)[J]. Chemical Engineering Journal, 2017, 316: 7-14. DOI:10.1016/j.cej.2017.01.083
[85]
WANG Y, CHEN C L, ZHOU D D, et al. Eliminating partial-transformation products and mitigating residual toxicity of amoxicillin through intimately coupled photocatalysis and biodegradation[J]. Chemosphere, 2019, 237: 124491. DOI:10.1016/j.chemosphere.2019.124491
[86]
SU Y, WANG X S, DONG S S, et al. Towards a simultaneous combination of ozonation and biodegradation for enhancing tetracycline decomposition and toxicity elimination[J]. Bioresource Technology, 2020, 304: 123009. DOI:10.1016/j.biortech.2020.123009
[87]
ZHANG M H, ZHAO Q L, BAI X, et al. Adsorption of organic pollutants from coking wastewater by activated coke[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 362(1/2/3): 140-146.
[88]
YANG W L, LI X C, PAN B C, et al. Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer[J]. Water Research, 2013, 47(13): 4730-4738. DOI:10.1016/j.watres.2013.05.032
[89]
SUN W L, QU Y Z, YU Q, et al. Adsorption of organicpollutants from coking and papermaking wastewaters by bottom ash[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 595-601.
[90]
王婷, 摆玉龙, 王维. 吸附法处理焦化废水的研究[J]. 化工设计通讯, 2020, 46(5): 237-238.
WANG T, BAI Y L, WANG W. Study on the treatment of coking wastewater by adsorption[J]. Chemical Engineering Design Communications, 2020, 46(5): 237-238. (in Chinese)
[91]
MATILAINEN A, VEPSÄLÄINEN M, SILLANPÄÄ M. Natural organic matter removal by coagulation during drinking water treatment:a review[J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197. DOI:10.1016/j.cis.2010.06.007
[92]
AMBASHTA R D, SILLANPÄÄ M. Water purification using magnetic assistance:a review[J]. Journal of Hazardous Materials, 2010, 180(1/2/3): 38-49.
[93]
张晓航, 何绪文, 王浩, 等. 磁絮凝工艺对含悬浮物矿井水处理效果的研究[J]. 水处理技术, 2018, 44(4): 122-125, 132.
ZHANG X H, HE X W, WANG H, et al. Mine water treatment effect with magnetic flocculation technology and flocs fractal characteristics[J]. Technology of Water Treatment, 2018, 44(4): 122-125, 132. (in Chinese)