期刊信息
主管单位:中华人民共和国教育部
主办单位:重庆大学
主 编:王时龙
地 址:重庆市沙坪坝正街174号
邮政编码:400030
电 话:
电子邮件:xbsg@cqu.edu.cn
国际标准刊号:ISSN 1000-582X
国内统一刊号:CN 50-1044/N
邮发代号:国内78-16 国外 M355
|
基于Attention-enhancing Unet的乳腺肿瘤超声图像分割算法 |
投稿时间:2020-07-08 修订日期:2020-08-27 |
关键词:乳腺超声图像 图像分割 注意力机制 深度学习 |
基金项目:1)2017江苏省自然科学基金(青年基金)(BK20170765) 2)2017国家自然科学基金(青年基金)(61703201) |
|
摘要点击次数: 1506 |
全文下载次数: 0 |
摘要: |
为提高乳腺超声图像病灶区域分割的准确性,该文对Attention-Unet进行改进,提出了注意力增强U形网络(Attention-enhancing Unet,AE-Unet)模型。首先,对网络损失函数进行改进,在传统网络末端输出预测值的基础上,融入所有注意力门(Attention Gate)输出权值,与标准病灶区域模板进行损失函数的计算,用于获取准确的网络损失值;其次,对网络训练方式进行改进,采用粗细结合的策略,先用总体损失函数训练整体网络,使网络基本稳定;再用部分损失函数,依次交替训练主干网络和注意力门模块,对基本网络参数进行微调,用于进一步提升网络参数的精度。两者结合,大大提高了乳腺超声图像病灶区域分割的准确性。在医院实际采集的乳腺超声数据上的实验结果表明,该文提出的AE-Unet模型在测试集上的M-IOU达82.21%,Precision达85.88%,Reall达79.51%,F1达82.57%,Acc达94.35%,Specitivity达97.35%,PPV达85.88%,相比现有先进算法取得了较好的分割结果。 |
|
查看/发表评论 下载PDF阅读器 |
|
|
|
|
|
Copyright@ 2008 All Rights Reserved.