期刊信息
主管单位:中华人民共和国教育部
主办单位:重庆大学
主 编:王时龙
地 址:重庆市沙坪坝正街174号
邮政编码:400030
电 话:
电子邮件:xbsg@cqu.edu.cn
国际标准刊号:ISSN 1000-582X
国内统一刊号:CN 50-1044/N
邮发代号:国内78-16 国外 M355
|
基于多源信息融合和ADCNN的离心鼓风机故障诊断 |
投稿时间:2021-01-05 修订日期:2021-04-22 |
关键词:故障诊断 多源信息融合 自适应深度卷积神经网络 离心鼓风机 |
基金项目:国家自然科学基金资助项目(51975075);重庆市技术创新与应用示范专项资助项目(cstc2018jszx-cyzdX0146) |
|
摘要点击次数: 1300 |
全文下载次数: 0 |
摘要: |
针对离心鼓风机故障识别过程中单一传感器信号故障信息有限,传统的卷积神经网络(CNN)在处理多源高维数据时特征提取能力不足的问题,提出一种基于多源信息融合和自适应深度卷积神经网络(ADCNN)的离心鼓风机故障诊断方法。首先,基于相关性方差贡献率法实现离心鼓风机多源同类信息的数据层融合,建立多源信息融合框架;然后,利用ADCNN自适应地提取各异类信息的特征并完成特征融合,建立融合多源信息的ADCNN故障诊断模型;最后,将此方法应用于离心鼓风机转子故障诊断上,并与传统的融合模式以及CNN、反向传播神经网络(BPNN)、支持向量机(SVM)方法进行对比,试验结果表明:提出的方法在诊断精度与鲁棒性上均优于其他方法。 |
|
查看/发表评论 下载PDF阅读器 |
|
|
|
|
|
Copyright@ 2008 All Rights Reserved.