文章快速检索     高级检索
  重庆大学学报  2017, Vol. 40 Issue (4): 18-23  DOI: 10.11835/j.issn.1000-582X.2017.04.003 RIS(文献管理工具)
0

引用本文 

张龙, 张晓敏, 褚钟祥, 彭松. 脉冲电流烧结Al2O3颗粒的广义热弹性分析[J]. 重庆大学学报, 2017, 40(4): 18-23. DOI: 10.11835/j.issn.1000-582X.2017.04.003.
ZHANG Long, ZHANG Xiaomin, CHU Zhongxiang, PENG Song. Thermoelastic analysis of Al2O3 powder in pulse electric current sintering[J]. Journal of Chongqing University, 2017, 40(4): 18-23. DOI: 10.11835/j.issn.1000-582X.2017.04.003. .

基金项目

重庆市自然科学基金资助项目(cstc2012jjA00009);中央高校基础研究基金项目(CDJZR14335501,CDJZR13240077)

通信作者

张晓敏 (联系人), 男, 副教授, (E-mail)xiaomin@cqu.edu.cn

作者简介

张龙 (1988-), 男, 博士研究生, 主要从事热力耦合问题的研究, (E-mail)longzhang@cqu.edu.cn

文章历史

收稿日期: 2016-10-02
脉冲电流烧结Al2O3颗粒的广义热弹性分析
张龙1,2, 张晓敏2, 褚钟祥2, 彭松2     
1. 重庆科技学院 数理学院, 重庆 401331;
2. 重庆大学 航空航天学院, 重庆 400044
摘要: 脉冲电流烧结过程的颈部形成机理,特别是非导电粉末材料,是需要着重研究的核心问题。以非导电Al2O3粉末为研究对象,引入L-S(Lord and Shulman)型广义热弹性方程,初步探究烧结初期非导电粉末颈部局部高温形成以及快速烧结机理。利用Comsol Multiphysics模拟得到脉冲电流烧结过程中颗粒内部的温度场和应力场分布以及烧结颈部的化学势和空位浓度变化规律。数值结果表明,热以波的形式在烧结颈部产生叠加,形成局部高温。化学势变化表明:烧结初期表面扩散占主要作用,空位浓度差的突变使烧结颈部产生局部空位浓度梯度,促进烧结颈长过程,缩短烧结时间。
关键词: 脉冲电流烧结    烧结机理    热弹性分析    化学势    局部高温    
Thermoelastic analysis of Al2O3 powder in pulse electric current sintering
ZHANG Long1,2 , ZHANG Xiaomin2 , CHU Zhongxiang2 , PENG Song2     
1. School of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 401331, P. R. China;
2. Department of Engineering Mechanics, College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China
Supported by Natural Science Foundation of Chongqing (cstc2012jjA00009) and the Fundamental Research Funds for the Central Universities (CDJZR14335501, CDJZR13240077)
Abstract: The neck growth mechanism of pulse electric current sintering (PECS), especially for non-conductive powder, is a key problem to study. In this paper, the rapid sintering mechanism and local high temperature of the neck at the initial stage in pulse electric current sintering was investigated for non-conductive Al2O3 powders based on the L-S (Lord and Shulman) generalized thermoelastic theory. The Comsol Multiphysics was applied to numerically simulate temperature, stress distribution, and the chemical potential and the vacancy concentration of sintering neck. The results show that the heat propagated with a finite velocity, and superposition was produced at sintering neck, so local high temperature generates. The chemical potential on the edge and center of sintering neck shows that surface diffusion is main diffusion mechanism. Local vacancy concentration gradient is present on the sintering neck, promoting the sintering process and reducing the sintering time.
Key Words: pulse electric current sintering    sintering mechanisms    thermoelasticity analysis    chemical potential    local high temperature    

脉冲电流烧结 (pulse electric current sintering,PECS) 是近年来发展起来的一种快速烧结技术,将脉冲电流通过石墨模具直接加到粉末试样上,在强电流、高温度和高温升率条件下对粉末颗粒进行快速烧结[1-2]。不同学者对其烧结机理进行了分析,对导电粉体,Tokita[3]认为颗粒间放电激发等离子体,在接触部产生瞬时的局部高温,形成烧结颈部,而Zhang[4]在实验中观察到等离子体的产生。Chen[5]研究了温度场和电场耦合作用下导电陶瓷的致密化机理,得到温度场和电场分布的不均匀性。但是颗粒间放电现象不适用于非导电粉体烧结机理的解释,因为非导电粉体中不会有电流通过。Wang和Chen[6-7]分别对导电Cu粉末和非导电Al2O3粉末进行了脉冲电流烧结实验,得出导电粉体的烧结机理为脉冲放电和焦耳热效应,非导电粉体为模具和压头的热传导。

烧结是一个系统自由能降低的热力学不可逆过程,是多种因素作用下的一系列物理、化学变化过程,化学势梯度是烧结的驱动力[8]。化学势梯度影响烧结颈部的空位浓度梯度,从而在颈部产生空位流动,形成颈长。Kuczynski等[9]推导出了表面扩散、体积扩散、蒸发凝聚和晶界扩散机制下的颈长动力学方程。

脉冲大电流作用下非导电颗粒具有烧结时间短、升温速度快和存在较大温度梯度的特点,经典的热弹性理论受到挑战[10]。粉末烧结体具有显著非均匀内结构的特性,使其在极高温升率与温度梯度下的短时程传热中表现出显著的非Fourier特征。Roetzel[11]在15~25 ℃的温度下,对平均粒径为130 nm的Al2O3颗粒的实验测得其延迟时间为5~45 s。因此,在探究脉冲电流烧结机理时需要引入非Fourier定律和相应的广义热弹性理论。Tian等[12]采用直接有限元法,研究了半无限大体受热冲击作用的动态响应问题, 得到了热的波传播形式。Strunin[13]分析了半无限长杆中线性和非线性热弹性波的传播规律,并比较了L-S和G-L (Green and Lindsay) 两种广义热弹性理论。

采用L-S型广义热弹性方程,结合烧结边界条件,对脉冲电流烧结等径两颗粒系统过程,建立无量纲化的三维控制方程。利用Comsol Multiphysics计算烧结过程中颗粒系统内部的温度场和应力场,并给出烧结颈部边缘和中心点化学势和空位浓度差变化规律,初步探究非导电粉体的快速烧结机理。

1 基本控制方程

CV (Cattaneo-Vernotte) 型非傅里叶热传导方程[14]

$ {{\mathit{\boldsymbol{q}}}_{j}}\left( x, t \right)+\tau {{\mathit{\boldsymbol{\dot{q}}}}_{j}}\left( \mathit{\boldsymbol{x}}, t \right)=-k\theta {{, }_{j}}\left( \mathit{\boldsymbol{x}}, t \right), $ (1)

式中:q为热流矢量;k为热扩散率;θ, j为温度梯度;x为位置矢量。与傅里叶热传导方程相比引入了延迟时间τ,并且给出了温度波传播的速度为

$ {{v}_{t}}=\sqrt{\frac{k}{\rho {{C}_{\varepsilon }}\tau }}, $ (2)

式中:ρ为材料密度;Cε为等应变比热。

将颗粒系统看成热弹性虎克介质,不计外力和体热源的L-S型广义热弹性控制方程[15]

$ k\theta {{, }_{jj}}=\rho {{C}_{\varepsilon }}\dot{\theta }+\rho {{C}_{\varepsilon }}\tau \ddot{\theta }+{{T}_{0}}\beta ({{{\mathit{\boldsymbol{\dot{u}}}}}_{j}}{{, }_{j}}+\tau {{{\mathit{\boldsymbol{\ddot{u}}}}}_{j}}{{, }_{j}}), $ (3)
$ \left( \lambda +\mathit{\boldsymbol{ }}\!\!\mu\!\!\rm{ } \right){{\mathit{\boldsymbol{u}}}_{j}}{{, }_{jk}}+\mathit{\boldsymbol{ }}\!\!\mu\!\!\rm{ }{{\nabla }^{2}}{{\mathit{\boldsymbol{u}}}_{k}}-\beta \theta {{, }_{k}}-\rho {{{\mathit{\boldsymbol{\ddot{u}}}}}_{k}}=0, $ (4)

式中:uj为位移张量;λμ为拉梅常数;T0为参考温度;$\beta =\frac{\alpha E}{1-2v}$为应力温度系数;Eν为弹性模量和泊松比;α为线膨胀系数,在直角坐标系下,u, v, w为位移张量uj沿x, y, z轴的3个分量。

无量纲分析中令:$\gamma =\frac{\sqrt{\gamma +2\mu }}{\rho }$$\eta =\frac{\rho {{C}_{\varepsilon }}}{k}$。将式 (3) 和式 (4) 写成分量形式取:x*=γηxy*=γηyz*=γηzu*=γηuv*=γηvw*=γηwt*=γ2ηtτ*=γ2ητθ*=$\frac{\theta }{{{T}_{0}}}$

在不引起混淆的情况下,略去右上角符号 (*),对方程 (3) 和 (4) 无量纲后的三维方程组为

$ \begin{align} & \left( 2\mu +\lambda \right)\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\mu \frac{{{\partial }^{2}}u}{\partial {{y}^{2}}}+\mu \frac{{{\partial }^{2}}u}{\partial {{z}^{2}}}+\left( \mu +\lambda \right)\frac{{{\partial }^{2}}v}{\partial x\partial y}+\left( \mu +\lambda \right)\frac{{{\partial }^{2}}w}{\partial x\partial z}-\\ & \ \ \ \ \ \ \ \ \ \ \left( 2\mu +\lambda \right)\frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}-\beta {{T}_{0}}\frac{\partial \theta }{\partial x}=0,\\ \end{align} $ (5.1)
$ \begin{align} & \mu \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+\left( 2\mu +\lambda \right)\frac{{{\partial }^{2}}v}{\partial {{y}^{2}}}+\mu \frac{{{\partial }^{2}}v}{\partial {{z}^{2}}}+\left( \mu +\lambda \right)\frac{{{\partial }^{2}}\boldsymbol{u}}{\partial x\partial y}+\left( \mu +\lambda \right)\frac{{{\partial }^{2}}w}{\partial y\partial z}-\\ & \ \ \ \ \ \ \ \ \ \left( 2\mu +\lambda \right)\frac{{{\partial }^{2}}v}{\partial {{t}^{2}}}-\beta {{T}_{0}}\frac{\partial \theta }{\partial y}=0,\\ \end{align} $ (5.2)
$ \begin{align} & \mu \frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\mu \frac{{{\partial }^{2}}w}{\partial {{y}^{2}}}+\left( 2\mu +\lambda \right)\frac{{{\partial }^{2}}w}{\partial {{z}^{2}}}+\left( \mu +\lambda \right)\frac{{{\partial }^{2}}\mathit{\boldsymbol{u}}}{\partial x\partial z}+\left( \mu +\lambda \right)\frac{{{\partial }^{2}}v}{\partial y\partial z}-\\ & \ \ \ \ \ \ \ \ \ \left( 2\mu +\lambda \right)\frac{{{\partial }^{2}}w}{\partial {{t}^{2}}}-\beta {{T}_{0}}\frac{\partial \theta }{\partial z}=0, \\ \end{align} $ (5.3)
$ \begin{align} & \frac{{{\partial }^{2}}\theta }{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}\theta }{\partial {{y}^{2}}}+\frac{{{\partial }^{2}}\theta }{\partial {{z}^{2}}}=\frac{\partial \theta }{\partial t}+\tau \frac{{{\partial }^{2}}\theta }{\partial {{t}^{2}}}+\frac{\beta }{\rho {{C}_{\varepsilon }}} \\ & \ \ \ \ \left( \frac{{{\partial }^{2}}\mathit{\boldsymbol{u}}}{\partial x\partial t}+{{\tau }_{0}}\frac{{{\partial }^{3}}\mathit{\boldsymbol{u}}}{\partial x\partial {{t}^{2}}}+\frac{{{\partial }^{2}}v}{\partial y\partial t}+{{\tau }_{0}}\frac{{{\partial }^{3}}v}{\partial y\partial {{t}^{2}}}+\frac{{{\partial }^{2}}w}{\partial z\partial t}+{{\tau }_{0}}\frac{{{\partial }^{3}}w}{\partial z\partial {{t}^{2}}} \right),\\ \end{align}$ (6)

由烧结理论可知应力对化学势的影响[16]

$ P=-\sigma \cdot \mathit{\Omega }\mathit{。} $ (7)

颈部与颗粒中心的空位浓度差[8]

$ \Delta C=\sigma \mathit{\Omega }{{C}_{0}}/k\prime \theta , $ (8)

式中:P为化学势;Ω为原子体积;C0为无应力区的平衡浓度;k′为玻尔兹曼常数。空位浓度差会使空位源和阱之间产生空位流动,而原子则按相反方向扩散至颈部表面,从而形成烧结颈长大过程。

2 模型及参数

烧结两颗粒模型如图 1所示。

图 1 两颗粒烧结模型 Figure 1 Double equal-sized particles model

两颗粒半径均为r=0.5,球心距O1O2=0.99,颈部接触部位半径为a。考虑颗粒与模具的接触情况,在两颗粒左右两端距球心距离为l=0.497 5处分别取一平行于Oyz平面的切面,相对应的边界条件为

在左右端面 (xleft=-0.497 5, xright=1.487 5) 受脉冲热流作用且位移分量被约束:

$ \begin{array}{l} q\left( {x,y,z,t} \right) = \left\{ \begin{array}{l} {q^*}{\rm{sin}}\left( {\omega t} \right),\;\;\;\;\;0 \le t \le 0.02;\\ 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;t > 0.02; \end{array} \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;u = v = w = 0, \end{array} $

式中:q*=1 000,ω=50π,其他地方为位移自由且绝热。

初始条件为

$ {{\boldsymbol{u}}_{j}}\left( t \right)=\theta \left( t \right)=\dot{\theta }\left( t \right)=0, $

材料参数[8, 17]E=340 GPa,ν=0.23,α=8.1×10-6K-1ρ=3 780kg/m3k=24 W/(m·K),Cε=1 080 J/(kg·K),Ω=1.4×10-23cm2k′=1.38×10-23J/K,取无量纲热延迟时间τ=0.05。

3 数值结果及讨论

图 2t=0.06和t=0.316颗粒三维表面的温度场和颗粒内部沿xOy切面温度场分布,由图可知,热在颗粒内部具有明显的波传播形式,热波波前将颗粒分为热传播区域和未传播区域,造成颗粒内部温度场的不均匀分布;随着烧结过程的进行,热波波前在颗粒接触部叠加,产生局部高温。

图 2 温度场分布 Figure 2 Temperature field distribution

图 3给出了t=0.28和t=0.316两颗粒连心线上的温度分布曲线,热以波的形式从颗粒两端向中心传播。热波在两等径颗粒中传播速度相同,恰好在颗粒接触部位形成叠加,由图 3可知叠加后形成的瞬时温度高于未叠加前的温度值。由叠加时刻结合几何尺寸还可求得热波传播的速度为v=4.7,式 (2) 的理论值为vt=4.472。温度场分布与文献[18]用直接有限元求解结果具有相同的趋势。

图 3 两球连心线上温度分布 Figure 3 Temperature distribution on the line of centers

烧结颈长大的原因是在颈部出现了空位流动,而空位流动取决于空位在颈部附近的浓度分布[8]。化学势作为烧结过程的驱动力,会影响颈部附近的空位浓度分布。

图 4给出了烧结颈部边缘和中心点由热应力 (σyσz) 产生的无量纲化学势变化规律,温度波到达烧结颈部时,边缘比中心点先产生突变,且突变值大于中心点,这说明在烧结初期表面扩散先于体积扩散,且表面扩散占主要作用,这与实际烧结过程相吻合[19]

图 4 颈部边缘和中心点的化学势变化 Figure 4 The chemical potential curve of neck edge and center

图 5为颈部边缘和中心点化学势产生突变值最大时,沿烧结颈部宽度的化学势分布。在烧结过程中颈部边缘的化学势最大,该结果与文献[16]相一致。这也说明了在烧结初期,物质迁移主要发生在烧结颈边缘。

图 5 化学势沿烧结颈部宽度分布 Figure 5 The chemical potential distribution along the sintering neck width

由式 (8) 可得到烧结颈部边缘和中心点的空位浓度差,如图 6所示。空位浓度差在烧结过程中是瞬态变化的,当热波到达时会发生突变,在颗粒边缘产生局部过剩空位,从而产生局部的空位浓度梯度,提高物质迁移驱动力,缩短了烧结时间。

图 6 颈部边缘和中心点空位浓度差 Figure 6 Vacancy concentration difference of neck edge and center
4 结语

采用L-S型广义热弹性理论,结合相应的初始和边界条件,得到脉冲电流加热作用下非导电Al2O3粉体烧结过程中的温度场、应力场,颈部化学势和空位浓度变化规律。计算结果表明:1) 热的波传播模式使得颗粒内部温度场分布不均匀,存在明显的温度梯度,并且在两球接触部位产生叠加形成了局部高温,促进粉末颗粒的快速烧结。2) 热波到达烧结颈部时,烧结颈部边缘和中心点化学势均产生突变,且边缘的化学势最大,说明在烧结初期,表面扩散占主要作用,这与实际烧结过程相吻合。3) 当热波到达时,在颗粒边缘会产生局部过剩空位,从而产生局部的空位浓度梯度,促进了烧结颈长,提高了颗粒的烧结活性。

参考文献
[1] 白玲, 葛昌纯, 沈卫平. 放电等离子烧结技术[J]. 粉末冶金技术, 2007, 25(3): 217–223.
BAI Ling, GE Changchun, SHEN Weiping. Spark plasma sintering technology[J]. Powder Metallurgy Technology, 2007, 25(3): 217–223. (in Chinese)
[2] Tokita M. Spark plasma sintering (SPS) method, systems, and applications[M]// Handbook of Advanced Ceramics. 2013: 1149-1177.
[3] Tokita M. Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering[J]. Materials Seienee Forum, 1999(308/309/310/311): 83–88.
[4] Zhang Z H, Liu Z F, Lu J F, et al. The sintering mechanism in spark plasma sintering-proof of the occurrence of spark discharge[J]. Scripta Materialia, 2014, 81(11): 56–59.
[5] Chen F, Yang S, WU J Y, et al. Spark plasma sintering and densification mechanisms of conductive ceramics under coupled thermal/electric fields[J]. Journal of the American Ceramic Society, 2015, 98(3): 732–740. DOI:10.1111/jace.2015.98.issue-3
[6] Wang S W, Chen L D, Kang Y S, et al. Effect of plasma activated sintering (PAS) parameters on densification of copper powder[J]. Materials Research Bulletin, 2000, 35(4): 619–628. DOI:10.1016/S0025-5408(00)00246-4
[7] Wang S W, Chen L D, Hirai T. Densification of Al2O3 powder using spark plasma sintering[J]. Journal of Materials Research, 2000, 15(4): 982–987. DOI:10.1557/JMR.2000.0140
[8] 果世驹. 粉末烧结理论[M]. 北京: 冶金工业出版社, 2007.
GUO Shiju. Powder metallurgy sintering theory[M]. Beijing: Metallurgical Industry Press, 2007. (in Chinese)
[9] 程远方, 果世驹, 赖和怡. 烧结理论进展-1.烧结单元模型建立方法之比较[J]. 粉末冶金技术, 1999, 17(3): 216–221.
CHENG Yuanfang, GUO Shiju, LAI Heyi. Theoretical modelling progress-1. The comparison of the unit model for the first stage of gravity sintering[J]. Powder Metallurgy Technology, 1999, 17(3): 216–221. (in Chinese)
[10] 田晓耕, 沈亚鹏. 广义热弹性问题研究进展[J]. 力学进展, 2012, 42(1): 18–28.
TIAN Xiaogeng, SHEN Yapeng. Research progress in generalized thermo-elastic problems[J]. Advances in Mechanics, 2012, 42(1): 18–28. DOI:10.6052/1000-0992-2012-1-lxjzJ2011-115 (in Chinese)
[11] Roetzel W, Putra N, Das S K. Experiment and analysis for non-fourier conduction in materials with non-homogeneous inner structure[J]. International Journal of Thermal Sciences, 2003, 42(6): 541–552. DOI:10.1016/S1290-0729(03)00020-6
[12] Tian X G, Shen Y P, Chen C Q, et al. A direct finite element method study of generalized thermoelastic problems[J]. International Journal of Solids and Structures, 2006, 43: 2050–2063. DOI:10.1016/j.ijsolstr.2005.06.071
[13] Strunin D V, Melnik R V N, Roberts A J. Coupled thermomechanical waves in hyperbolic thermoelasticity[J]. Journal of Thermal Stresses, 2001, 24(2): 121–140. DOI:10.1080/01495730150500433
[14] Kumar K, Tamma, Zhou X M. Macroscale and microscale thermal transport and thermo-mechanical interactions:some noteworthy prespectives[J]. Journal of Thermal Stresses, 1998, 21(3/4): 405–449.
[15] Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity[J]. Journal of Guangxi University for Nationalities, 2007, 15(5): 299–309.
[16] 吴艳青, 黄风雷. 粉末热压扩散与应力场耦合的力学模型[J]. 力学学报, 2008, 40(4): 550–556.
WU Yanqing, HUANG Fenglei. A powder compaction mechanical model for diffusion coupled with stress field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 550–556. DOI:10.6052/0459-1879-2008-4-2006-489 (in Chinese)
[17] Taymaz I, Mimaroglu A, Avci E, et al. Comparison of thermal stresses developed in Al2O3±SG, ZrO2±(12%Si+Al) and ZrO2±SG thermal barrier coating systems with NiAl, NiCrAlY and NiCoCrAlY interlayer materials subjected to thermal loading[J]. Surface and Coatings Technology, 1999, 116: 690–693.
[18] 张龙, 张晓敏, 褚钟祥. 基于非Fourier热传导的Al2O3颗粒烧结的三维广义热弹性分析[C]//中国计算力学大会2014暨钱令希计算力学奖颁奖大会, 2014.
ZHANG Long, ZHANG Xiaomin, CHU Zhongxiang. Study on Three-dimensional Generalized Thermoelastic Analysis of Al2O3 Powder Sintering Sintering Based on Non-Fourier Heat Conduction[C]//CCCM, 2014.
[19] 程远方, 果世驹, 赖和怡. 烧结理论研究进展-2.烧结初期多种扩散机制耦合作用的烧结模型[J]. 粉末冶金技术, 1999, 17(4): 257–263.
CHENG Yuanfang, GUO Shiju, LAI Heyi. Theoretical modelling progress-2. Coupling model of multiple sintering mechanisms for the initial stage sintering[J]. Powder Metallurgy Technology, 1999, 17(4): 257–263. (in Chinese)
图 1 两颗粒烧结模型 Figure 1 Double equal-sized particles model
图 2 温度场分布 Figure 2 Temperature field distribution
图 3 两球连心线上温度分布 Figure 3 Temperature distribution on the line of centers
图 4 颈部边缘和中心点的化学势变化 Figure 4 The chemical potential curve of neck edge and center
图 5 化学势沿烧结颈部宽度分布 Figure 5 The chemical potential distribution along the sintering neck width
图 6 颈部边缘和中心点空位浓度差 Figure 6 Vacancy concentration difference of neck edge and center
脉冲电流烧结Al2O3颗粒的广义热弹性分析
张龙, 张晓敏, 褚钟祥, 彭松